-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpyASVM.py
520 lines (388 loc) · 18.2 KB
/
pyASVM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
from math import e, pi, sqrt, exp
from time import sleep
from sys import float_info
from glob import glob
from matrix import *
from cFunctions import *
REALMIN = float_info.min
class DynamicalSystem():
def __init__(self, datapath='./'):
if datapath[-1] != '/' and datapath != '':
print "Warning! Datapath must include a trailing slash!"
datapath += '/'
self.datapath = datapath
self.loadParameters()
def simulate(self, platform, n, maxLimits=None, minLimits=None):
""" Performs a simulation of a given Dynamical System. The robot goes
to a random position and then execute the Dynamical System until
equilibrium is reached. The procedure is repeated n times.
Inputs:
platform: platform object from pyASVMplatforms library
n: Number of tries
max/minLimits: optionally, the upper/bottom limits of the positions
can be set to test DS defined only in a bounded region
as lists of numbers. Both limits should be provided.
Otherwise, the system will use the mechanical limits
of Nao for both, max and min bounds.
"""
if maxLimits is None or minLimits is None:
bounded = False
else:
bounded = True
for i in range(n):
platform.say("Going to initial position")
x = platform.getRandomPosition(minLimits, maxLimits)
platform.goToAngles(x)
sleep(4.0)
platform.say("Starting Dynamical System")
sleep(2.0)
self.runUntilEq(platform)
platform.say("equilibrium reached")
platform.say("Simulation finished")
def runUntilEq(self, platform, dt=0.12, waitTime=0.01):
""" Runs a Dynamical System over Nao until equilibrium is reached.
Inputs:
platform: platform object from pyASVMplatforms library
dt: optionally, the considered time increment for each step
(default: 0.12)
waitTime: optionally, the sleep time for each iteration (i.e. the
time the system is waiting between iterations). The
waitTime should be experimentally adjusted to obtain a
credible motion. In theory:
waitTime = dt - time expended in computation/iteration)
waitTime can be used also to accelerate the motion.
(default: 0.01)
"""
equilibrium = False
while not equilibrium:
equilibrium = self.runStep(platform, dt)
sleep(waitTime)
def runStep(self, platform, dt=0.1, tol=1):
""" Runs a step in the Dynamical System
Inputs:
platform: platform object from pyASVMplatforms library
dt: time interval of the step, used to compute dx = v dt
Default: 0.1
tol: equilibirum tolerance factor, used to amplify or
decrease the predefined tolerances of the joints.
Default: 1
"""
platform.updateAngles()
x = platform.x
velocity = self.GMR(x)
dx = [dt*v for v in velocity]
platform.moveAngles(dx)
equilibrium = platform.equilibriumReached(dx, tol)
return equilibrium
def GMR(self, x):
""" Returns the velocity assigned by a Gaussian Mixture represented
Dynamical System to a point x.
Inputs:
x: Position vector as a list of numbers.
Output:
y: A list with the numerical velocities in each direction
"""
x = Matrix.fromList([x]).getTranspose()
# Adjusting intercept if necessearly
if self.xTrans is not None:
x = x - self.xTrans
d = self.Mu[0].getRank()[0]/2 # Dimensions
K = len(self.Sigma) # Number of gaussians
h = [self.Priors[j] * self.gaussPDF(x, j) for j in range(K)]
# Normalising
totalh = max(sum(h), REALMIN)
h = [hi / totalh for hi in h]
A = [self.Sigma[i].getSlice(range(d, 2*d),range(d)) * self.SigmaInv[i] for i in range(K)]
b = [(self.Mu[j].getSlice(range(d, 2*d), [0]) +
A[j] * (x - self.Mu[j].getSlice(range(d), [0]))) for j in range(K)]
y = Matrix(d,1)
for j in range(K):
y += sprod(h[j], b[j])
return y.getTranspose().rows[0]
def gaussPDF(self, x, k):
""" Returns the Probability Density Function of a multivariate Gaussian
represented by means and covariance matrices for a given point x.
Input:
x: position vector (as a Matrix object)
k: index of the desired Gaussian
Output:
p: a single scalar representing the Probability of the point
"""
gamma = 0.6 # RBF factor
d = x.getRank()[0] # Dimension
mu = self.Mu[k].getSlice(range(d), [0]) # Spatial part of Mu[k]
# Argument of the exponential
arg = (((x - mu).getTranspose() * self.SigmaInv[k]) * (x - mu))[0][0]
# Coefficient of the probability
coef = 1 / (sqrt((2 * pi) ** d * (abs(self.SigmaDet[k]) + REALMIN)))
p = coef * (e ** (- gamma * arg))
return p
def loadParameters(self):
""" Load all the DS parameters generated form the MATLAB libraries given
the path of the files. Path must include trailing slash: path/
Loaded parameters:
Mu: list of matrices (Matrix objects)
Sigma: list of matrices (Matrix objects)
SigmaInv: list of matrices (Matrix objects)
SigmaDet: list of numbers
Priors: list of numbers
xTrans: list of matrices (Matrix objects)
"""
self.Mu = loadMatrices(self.datapath + 'Mu*')
self.Sigma = loadMatrices(self.datapath + 'SigmaMat*')
self.SigmaInv = loadMatrices(self.datapath + 'SigmaInv*')
xTrans = loadMatrices(self.datapath + 'xTrans')
if xTrans == []:
self.xTrans = None
else:
self.xTrans = loadMatrices(self.datapath + 'xTrans')[0]
SigmaDet = loadMatrices(self.datapath + 'SigmaDet*')
self.SigmaDet = SigmaDet[0].getTranspose().rows[0]
Priors = loadMatrices(self.datapath + 'Priors')
if Priors[0].n == 1:
self.Priors = Priors[0].getTranspose().rows[0]
else:
self.Priors = Priors[0].rows[0]
class MultiClassDynamicalSystem():
def __init__(self, datapaths):
if len(datapaths) == 1 and datapaths != '':
print "Warning: only one datapath provided!"
print "Are you sure this is a multiclass DS?"
self.cardinality = len(datapaths)
self.datapaths = datapaths
self.DS = [DynamicalSystem(self.datapaths[i]) for i in self.cardinality]
# A-SVM Classes
class SingleClassASVM():
def __init__(self, datapath='./'):
self.datapath = datapath
self.loadParameters()
self.kernelG = 0.5
def modVelocity(self, x, steps=None):
""" Returns the a-svm modulated velocity given a vector point x as a list.
Parameters:
step = numerical vector (dx1, dx2, ..., dxn) for the gradient (list)
"""
# Modulation Function h
h = self.getH(x)
# Gradient of the modulation function Dh
Dh = self.gradH(x, steps, h)
Dh = Matrix.fromList([Dh])
# Unitary vector in Dh direction Dh1
Dh1 = sprod(1 / max(Dh.getNorm(), REALMIN), Dh) # avoids dividing by zero
# Nominal velocity according to DS + stabiliser
velocity = self.DS.GMR(x)
velocity = Matrix.fromList([velocity]).getTranspose()
velocity = self.stabiliseVelocity(velocity, x)
orthVel = sprod(self.computeLambda(Dh1, h, velocity), Dh1).getTranspose()
parVel = velocity - sprod((Dh1 * velocity)[0][0], Dh1).getTranspose()
modVel = parVel + orthVel
return modVel.getTranspose().rows[0]
def stabiliseVelocity(self, velocity, x):
""" Returns stabilised velocity given a velocity vector, attractor
position target and current position x
"""
position = Matrix.fromList([x]).getTranspose()
stabilisationConstant = 0.3 * velocity.getNorm()
badDir = self.target - position
badDir = sprod(1 / max(badDir.getNorm(), REALMIN), badDir)
badComponent = velocity.getNorm()
coefficient = max(badComponent, stabilisationConstant)
velocity = velocity + sprod(coefficient - badComponent, badDir)
return velocity
def computeLambda(self, Dh1, h, velocity):
""" Returns lambda value for a velocity vector, the real value
of the modulation function h and its gradient direction Dh1
"""
speed = velocity.getNorm()
epsMax = 0.5 * speed
epsMin = 0.1 * speed
proj = (Dh1 * velocity)[0][0]
if h > 0:
l = max(epsMin, proj);
else:
l = max(epsMax, proj);
return l
def gradH(self, x, steps=None, h=None):
""" Returns the numerically computed gradient of the modulation function h
given a vector point x (as a list), a step vector defining the step
taken in every direction (as lists)
Parameters:
steps = list of the steps (dx1, dx2, ..., dxn) for the gradient. You
can use step instead if all dimensions have the same step
h = the current h value (can be provided to improve performance)
"""
dim = len(x)
step = 1E-5
if h is None:
h = self.getH(x)
if steps is None:
steps = [step for i in range(dim)]
# As we want to measure the change in each dimension, we prepare a
# different x_final for each dimension
xf = [x for i in range(dim)]
for i in range(dim):
xf[i][i] += steps[i]
gradH = [(self.getH(xf[i]) - h) / steps[i] for i in range(dim)]
return gradH
def getH(self, x):
""" Returns the modulation function value for a vector point x (as a list) """
h = self.alphaSum(x) + self.betaSum(x) - self.gammaSum(x) + self.bias
return h
def alphaSum(self, x):
""" Returns the first term of the h sum computation """
alphaS = sum([self.a[i] * self.ker(x, self.xa.getTranspose()[i]) for i in range(self.xa.n)])
return alphaS
def betaSum(self, x):
""" Returns the second term of the h sum computation """
betaS = sum([self.b[i] * self.vb[i][j] * self.dx2ker(x, self.xb[i])[j]
for i in range(len(self.b)) for j in range(len(x))])
return betaS
def gammaSum(self, x):
""" Returns the third term of the h sum computation """
gammaS = sum([self.g[i] * self.dx2ker(x, self.target.getTranspose()[0])[i]
for i in range(len(x))])
return gammaS
def ker(self, x1, x2):
""" Returns the result of applying a RBF kernel to vectors x1, x2 with
a given gamma (default: gamma = 0.5)
"""
k = exp(- self.kernelG * sum([(x1[i] - x2[i]) ** 2 for i in range(len(x1))]))
return k
def dx2ker(self, x1, x2):
""" Returns the result of applying the derivative of a RBF kernel to
vectors x1, x2 with a given gamma (default: gamma = 0.5)
"""
dk = [2 * self.kernelG * self.ker(x1, x2) * (x1[i] - x2[i]) for i in range(len(x1))]
return dk
def loadParameters(self):
""" Load a single class A-SVM (i.e. an A-SVM with a positive class where
everything else is part of the negative class) from files generated
with the MATLAB libraries.
Parameters:
DS Parameters (loaded as a DS object):
Mu: list of matrices (Matrix objects)
Sigma: list of matrices (Matrix objects)
SigmaInv: list of matrices (Matrix objects)
SigmaDet: list of numbers
Priors: list of numbers
ASVM Parameters:
targets: list of matrices (Matrix objects)
a, b, g: alpha/beta/gamma: three lists of numbers
bias: a single number
xa, xb, vb: three matrices (Matrix objects)
"""
self.DS = DynamicalSystem(self.datapath)
self.target = loadMatrices(self.datapath + 'Target')[0]
try:
alpha = loadMatrices(self.datapath + 'Alpha')
gamma = loadMatrices(self.datapath + 'Gamma')
bias = loadMatrices(self.datapath + 'Bias')
xa = loadMatrices(self.datapath + 'aPoints')
except IOError: # files don't exist
print "ASVM files not found"
alpha = beta = gamma = xa = xb = vb = bias = Matrix(0,0,init=False)
self.a = alpha[0].getTranspose().rows[0]
self.xa = xa[0]
beta = loadMatrices(self.datapath + 'Beta')
xb = loadMatrices(self.datapath + 'bPoints')
vb = loadMatrices(self.datapath + 'bVels')
if len(beta) == 0:
self.xb = []
self.vb = []
self.b = []
print 'No beta files found! :S'
else:
self.xb = xb[0].getTranspose()
self.vb = vb[0].getTranspose()
self.b = beta[0].getTranspose()[0]
self.g = gamma[0].getTranspose().rows[0]
self.bias = bias[0].getTranspose().rows[0][0]
class MultiClassASVM():
def __init__(self, datapaths):
if len(datapaths) == 1 and datapaths != '':
print "Warning: only one datapath provided!"
print "Are you sure this is a multiclass DS?"
self.cardinality = len(datapaths)
self.datapaths = datapaths
self.ASVM = [SingleClassASVM(self.datapaths[i]) for i in range(self.cardinality)]
def simulate(self, platform, n=10, minI=None, maxI=None):
""" Performs a simulation of a given A-SVM system. The robot goes first
to a random position and then execute the ASVM until equilibrium
is reached. The procedure is repeated n times to test different
initial conditions.
Inputs:
platform: platform object from pyASVMplatforms library
n: Number of tries. Default: 10
max/minI: optionally, the upper/bottom limits of the positions
can be set to test DS defined only in a bounded region
as lists of numbers. Both limits should be provided.
Otherwise, the system will use the mechanical limits
of Nao for both, max and min bounds.
"""
for i in range(n):
platform.say("Going to initial position")
x = platform.getRandomPosition(minI, maxI)
platform.goToAngles(x)
sleep(2.0)
platform.say("Starting A.S.V.M")
sleep(1.0)
gK = self.runUntilEq(platform, 0.25, 0.02)
platform.say("Equilibrium reached at attractor: " + str(gK))
platform.say("Simulation finished")
def runUntilEq(self, platform, dt=0.1, waitTime=0.01):
""" Runs a SVM motion until the equilibrium has been reached.
Inputs:
platform: platform object from pyASVMplatforms library
dt: time interval used to compute dx = v dt. Default: 0.1
waitTime: optionally, the sleep time for each iteration (i.e. the
time the system is waiting between iterations). The
waitTime should be experimentally adjusted to obtain a
credible motion. In theory:
waitTime = dt - time expended in computation/iteration)
waitTime can be used also to accelerate the motion.
Default: 0.01
Outputs:
gK: the index of the reached attractor
"""
equilibrium = False
while not equilibrium:
gK, equilibrium = self.runStep(platform, dt)
sleep(waitTime)
return gK
def runStep(self, platform, dt=0.07, tol=1):
""" Runs an ASVM step given its parameters and a motion proxy.
Inputs:
platform: platform object from pyASVMplatforms library
dt: time interval used to compute dx = v dt. Default: 0.1
tol: multiplicative factor to amplify/decrease the tolerances of
the joints. Default: 1
Outputs:
gK: the index of the used attractor in the step
equilibrium: boolean variable indicating if the step finished in an
equilibrium situation (i.e. velocities under the threshold)
"""
platform.updateAngles()
x = platform.x
gk = self.getLargerHIndex(x)
velocity = self.ASVM[gk].modVelocity(x)
dx = [dt*v for v in velocity]
platform.moveAngles(dx)
equilibrium = platform.equilibriumReached(dx, tol)
return [gk, equilibrium]
def getLargerHIndex(self, x):
""" Returns the class index with the larger h value.
Input: x as a list of numbers representing the current point vector
Output: the index of the class with greater h
"""
h = [self.ASVM[i].getH(x) for i in range(self.cardinality)]
return h.index(max(h))
# Extra functions
def loadMatrices(globpattern):
""" Loads from files a list of all matrices in files given a name with a
wildcard. If a single name is provided, the output is still a list
with a single element
"""
matrices = []
for fname in sorted(glob(globpattern)):
matrices.append(Matrix.readGrid(fname))
return matrices