forked from MRUIL/WDNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
115 lines (102 loc) · 4.04 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import argparse, os, torch
#from GAN import GAN
from WDNet import WDNet
#from LSGAN import LSGAN
#from DRAGAN import DRAGAN
#from ACGAN import ACGAN
#from WGAN import WGAN
#from WGAN_GP import WGAN_GP
#from infoGAN import infoGAN
#from EBGAN import EBGAN
#from BEGAN import BEGAN
"""parsing and configuration"""
def parse_args():
desc = "Pytorch implementation of GAN collections"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--gan_type', type=str, default='CGAN',
choices=['GAN', 'CGAN', 'infoGAN', 'ACGAN', 'EBGAN', 'BEGAN', 'WGAN', 'WGAN_GP', 'DRAGAN', 'LSGAN'],
help='The type of GAN')
parser.add_argument('--dataset', type=str, default='mnist', choices=['mnist', 'fashion-mnist', 'cifar10', 'cifar100', 'svhn', 'stl10', 'lsun-bed'],
help='The name of dataset')
parser.add_argument('--split', type=str, default='', help='The split flag for svhn and stl10')
parser.add_argument('--epoch', type=int, default=50, help='The number of epochs to run')
parser.add_argument('--batch_size', type=int, default=64, help='The size of batch')
parser.add_argument('--input_size', type=int, default=28, help='The size of input image')
parser.add_argument('--save_dir', type=str, default='models',
help='Directory name to save the model')
parser.add_argument('--result_dir', type=str, default='results', help='Directory name to save the generated images')
parser.add_argument('--log_dir', type=str, default='logs', help='Directory name to save training logs')
parser.add_argument('--lrG', type=float, default=0.0002)
parser.add_argument('--lrD', type=float, default=0.0002)
parser.add_argument('--beta1', type=float, default=0.5)
parser.add_argument('--beta2', type=float, default=0.999)
parser.add_argument('--gpu_mode', type=bool, default=True)
parser.add_argument('--benchmark_mode', type=bool, default=True)
parser.add_argument('--gpu', type=str, default='0')
return check_args(parser.parse_args())
"""checking arguments"""
def check_args(args):
# --save_dir
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
# --result_dir
if not os.path.exists(args.result_dir):
os.makedirs(args.result_dir)
# --result_dir
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
# --epoch
try:
assert args.epoch >= 1
except:
print('number of epochs must be larger than or equal to one')
# --batch_size
try:
assert args.batch_size >= 1
except:
print('batch size must be larger than or equal to one')
return args
"""main"""
def main():
# parse arguments
args = parse_args()
if args is None:
exit()
if args.benchmark_mode:
torch.backends.cudnn.benchmark = True
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
# declare instance for GAN
'''
if args.gan_type == 'GAN':
gan = GAN(args)
elif args.gan_type == 'CGAN':
gan = CGAN(args)
elif args.gan_type == 'ACGAN':
gan = ACGAN(args)
elif args.gan_type == 'infoGAN':
gan = infoGAN(args, SUPERVISED=False)
elif args.gan_type == 'EBGAN':
gan = EBGAN(args)
elif args.gan_type == 'WGAN':
gan = WGAN(args)
elif args.gan_type == 'WGAN_GP':
gan = WGAN_GP(args)
elif args.gan_type == 'DRAGAN':
gan = DRAGAN(args)
elif args.gan_type == 'LSGAN':
gan = LSGAN(args)
elif args.gan_type == 'BEGAN':
gan = BEGAN(args)
'''
if args.gan_type == 'CGAN':
gan = WDNet(args)
else:
raise Exception("[!] There is no option for " + args.gan_type)
# launch the graph in a session
gan.train()
print(" [*] Training finished!")
# visualize learned generator
gan.visualize_results(args.epoch)
print(" [*] Testing finished!")
if __name__ == '__main__':
main()