forked from terrifyzhao/text_matching
-
Notifications
You must be signed in to change notification settings - Fork 1
/
word2vec_static.py
32 lines (28 loc) · 989 Bytes
/
word2vec_static.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from gensim.models import Word2Vec
import pandas as pd
import jieba
from bimpm import args
df = pd.read_csv('input/train.csv')
p = df['sentence1'].values
h = df['sentence2'].values
p_seg = list(map(lambda x: list(jieba.cut(x)), p))
h_seg = list(map(lambda x: list(jieba.cut(x)), h))
common_texts = []
common_texts.extend(p_seg)
common_texts.extend(h_seg)
df = pd.read_csv('input/dev.csv')
p = df['sentence1'].values
h = df['sentence2'].values
p_seg = list(map(lambda x: list(jieba.cut(x)), p))
h_seg = list(map(lambda x: list(jieba.cut(x)), h))
common_texts.extend(p_seg)
common_texts.extend(h_seg)
df = pd.read_csv('input/test.csv')
p = df['sentence1'].values
h = df['sentence2'].values
p_seg = list(map(lambda x: list(jieba.cut(x)), p))
h_seg = list(map(lambda x: list(jieba.cut(x)), h))
common_texts.extend(p_seg)
common_texts.extend(h_seg)
model = Word2Vec(common_texts, size=args.word_embedding_len, window=5, min_count=0, workers=12)
model.save("output/word2vec/word2vec.model")