forked from opendatalab/MinerU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
magic_pdf_parse_main.py
136 lines (108 loc) · 4.86 KB
/
magic_pdf_parse_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import json
import copy
from loguru import logger
from magic_pdf.pipe.UNIPipe import UNIPipe
from magic_pdf.pipe.OCRPipe import OCRPipe
from magic_pdf.pipe.TXTPipe import TXTPipe
from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
import magic_pdf.model as model_config
model_config.__use_inside_model__ = True
# todo: 设备类型选择 (?)
def json_md_dump(
pipe,
md_writer,
pdf_name,
content_list,
md_content,
):
# 写入模型结果到 model.json
orig_model_list = copy.deepcopy(pipe.model_list)
md_writer.write(
content=json.dumps(orig_model_list, ensure_ascii=False, indent=4),
path=f"{pdf_name}_model.json"
)
# 写入中间结果到 middle.json
md_writer.write(
content=json.dumps(pipe.pdf_mid_data, ensure_ascii=False, indent=4),
path=f"{pdf_name}_middle.json"
)
# text文本结果写入到 conent_list.json
md_writer.write(
content=json.dumps(content_list, ensure_ascii=False, indent=4),
path=f"{pdf_name}_content_list.json"
)
# 写入结果到 .md 文件中
md_writer.write(
content=md_content,
path=f"{pdf_name}.md"
)
def pdf_parse_main(
pdf_path: str,
parse_method: str = 'auto',
model_json_path: str = None,
is_json_md_dump: bool = True,
output_dir: str = None
):
"""
执行从 pdf 转换到 json、md 的过程,输出 md 和 json 文件到 pdf 文件所在的目录
:param pdf_path: .pdf 文件的路径,可以是相对路径,也可以是绝对路径
:param parse_method: 解析方法, 共 auto、ocr、txt 三种,默认 auto,如果效果不好,可以尝试 ocr
:param model_json_path: 已经存在的模型数据文件,如果为空则使用内置模型,pdf 和 model_json 务必对应
:param is_json_md_dump: 是否将解析后的数据写入到 .json 和 .md 文件中,默认 True,会将不同阶段的数据写入到不同的 .json 文件中(共3个.json文件),md内容会保存到 .md 文件中
:param output_dir: 输出结果的目录地址,会生成一个以 pdf 文件名命名的文件夹并保存所有结果
"""
try:
pdf_name = os.path.basename(pdf_path).split(".")[0]
pdf_path_parent = os.path.dirname(pdf_path)
if output_dir:
output_path = os.path.join(output_dir, pdf_name)
else:
output_path = os.path.join(pdf_path_parent, pdf_name)
output_image_path = os.path.join(output_path, 'images')
# 获取图片的父路径,为的是以相对路径保存到 .md 和 conent_list.json 文件中
image_path_parent = os.path.basename(output_image_path)
pdf_bytes = open(pdf_path, "rb").read() # 读取 pdf 文件的二进制数据
if model_json_path:
# 读取已经被模型解析后的pdf文件的 json 原始数据,list 类型
model_json = json.loads(open(model_json_path, "r", encoding="utf-8").read())
else:
model_json = []
# 执行解析步骤
# image_writer = DiskReaderWriter(output_image_path)
image_writer, md_writer = DiskReaderWriter(output_image_path), DiskReaderWriter(output_path)
# 选择解析方式
# jso_useful_key = {"_pdf_type": "", "model_list": model_json}
# pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
if parse_method == "auto":
jso_useful_key = {"_pdf_type": "", "model_list": model_json}
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
elif parse_method == "txt":
pipe = TXTPipe(pdf_bytes, model_json, image_writer)
elif parse_method == "ocr":
pipe = OCRPipe(pdf_bytes, model_json, image_writer)
else:
logger.error("unknown parse method, only auto, ocr, txt allowed")
exit(1)
# 执行分类
pipe.pipe_classify()
# 如果没有传入模型数据,则使用内置模型解析
if not model_json:
if model_config.__use_inside_model__:
pipe.pipe_analyze() # 解析
else:
logger.error("need model list input")
exit(1)
# 执行解析
pipe.pipe_parse()
# 保存 text 和 md 格式的结果
content_list = pipe.pipe_mk_uni_format(image_path_parent, drop_mode="none")
md_content = pipe.pipe_mk_markdown(image_path_parent, drop_mode="none")
if is_json_md_dump:
json_md_dump(pipe, md_writer, pdf_name, content_list, md_content)
except Exception as e:
logger.exception(e)
# 测试
if __name__ == '__main__':
pdf_path = r"C:\Users\XYTK2\Desktop\2024-2016-gb-cd-300.pdf"
pdf_parse_main(pdf_path)