-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_imgs.py
62 lines (53 loc) · 2.56 KB
/
detect_imgs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
"""
This code is used to batch detect images in a folder.
"""
import os
import sys
import cv2
from vision.ssd.config.fd_config import define_img_size
input_img_size = 640 # define input size ,default optional(128/160/320/480/640/1280)
define_img_size(input_img_size) # must put define_img_size() before 'import create_mb_tiny_fd, create_mb_tiny_fd_predictor'
from vision.ssd.mb_tiny_fd import create_mb_tiny_fd, create_mb_tiny_fd_predictor
from vision.ssd.mb_tiny_RFB_fd import create_Mb_Tiny_RFB_fd, create_Mb_Tiny_RFB_fd_predictor
# net_type = "mb_tiny_fd" # inference faster,lower precision
net_type = "mb_tiny_RFB_fd" # inference lower,higher precision
path = "imgs"
result_path = "./detect_imgs_results"
label_path = "./models/voc-model-labels.txt"
test_device = "cuda:0"
candidate_size = 1500
threshold = 0.7
class_names = [name.strip() for name in open(label_path).readlines()]
if net_type == 'mb_tiny_fd':
model_path = "models/pretrained/Mb_Tiny_FD_train_input_320.pth"
net = create_mb_tiny_fd(len(class_names), is_test=True, device=test_device)
predictor = create_mb_tiny_fd_predictor(net, candidate_size=candidate_size, device=test_device)
elif net_type == 'mb_tiny_RFB_fd':
model_path = "models/pretrained/Mb_Tiny_RFB_FD_train_input_320.pth"
# model_path = "models/pretrained/Mb_Tiny_RFB_FD_train_input_640.pth"
net = create_Mb_Tiny_RFB_fd(len(class_names), is_test=True, device=test_device)
predictor = create_Mb_Tiny_RFB_fd_predictor(net, candidate_size=candidate_size, device=test_device)
else:
print("The net type is wrong!")
sys.exit(1)
net.load(model_path)
if not os.path.exists(result_path):
os.makedirs(result_path)
listdir = os.listdir(path)
sum = 0
for file_path in listdir:
img_path = os.path.join(path, file_path)
orig_image = cv2.imread(img_path)
image = cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB)
boxes, labels, probs = predictor.predict(image, candidate_size / 2, threshold)
sum += boxes.size(0)
for i in range(boxes.size(0)):
box = boxes[i, :]
cv2.rectangle(orig_image, (box[0], box[1]), (box[2], box[3]), (0, 0, 255), 2)
# label = f"""{voc_dataset.class_names[labels[i]]}: {probs[i]:.2f}"""
label = f"{probs[i]:.2f}"
# cv2.putText(orig_image, label, (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(orig_image, str(boxes.size(0)), (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.imwrite(os.path.join(result_path, file_path), orig_image)
print(f"Found {len(probs)} faces. The output image is {path}")
print(sum)