From ea3ef26fa2618d14e30fa6ccadb177ba6a28bd7f Mon Sep 17 00:00:00 2001 From: Kumar Shivendu Date: Mon, 5 Feb 2024 07:07:41 +0100 Subject: [PATCH] Improve README --- README.md | 10 +++------- 1 file changed, 3 insertions(+), 7 deletions(-) diff --git a/README.md b/README.md index 7d32296e..4b813db9 100644 --- a/README.md +++ b/README.md @@ -23,7 +23,7 @@ To install the FastEmbed library, pip works: pip install fastembed ``` -## 📖 Usage +## 📖 Quickstart ```python from fastembed import TextEmbedding @@ -57,7 +57,6 @@ from qdrant_client import QdrantClient client = QdrantClient("localhost", port=6333) # For production # OR if you just want to try it out quickly: # client = QdrantClient(":memory:") -# client = QdrantClient(path="path/to/db") # Prepare your documents, metadata, and IDs docs = ["Qdrant has Langchain integrations", "Qdrant also has Llama Index integrations"] @@ -71,17 +70,14 @@ ids = [42, 2] # client.set_model("sentence-transformers/all-MiniLM-L6-v2") # List of supported models: https://qdrant.github.io/fastembed/examples/Supported_Models -# Use the new add method +# Use the new add() method instead of upsert() method +# This internally calls embed() method of the configured embedding model client.add( collection_name="demo_collection", documents=docs, metadata=metadata, ids=ids ) -# If you just want the embeddings: -# from fastembed.embedding import TextEmbedding -# model = TextEmbedding() -# embeddings = model.embed(docs, batch_size=32) search_result = client.query( collection_name="demo_collection",