forked from lucidrains/alphafold2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_end2end.py
166 lines (123 loc) · 4.49 KB
/
train_end2end.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import torch
from torch.optim import Adam
from torch.utils.data import DataLoader
import torch.nn.functional as F
from einops import rearrange
# data
import sidechainnet as scn
from sidechainnet.sequence.utils import VOCAB
from sidechainnet.structure.build_info import NUM_COORDS_PER_RES
# models
from alphafold2_pytorch import Alphafold2
import alphafold2_pytorch.constants as constants
from se3_transformer_pytorch import SE3Transformer
from alphafold2_pytorch.utils import *
# constants
FEATURES = "esm" # one of ["esm", "msa", "msa_transformer", None]
DEVICE = None # defaults to cuda if available, else cpu
NUM_BATCHES = int(1e5)
GRADIENT_ACCUMULATE_EVERY = 16
LEARNING_RATE = 3e-4
IGNORE_INDEX = -100
THRESHOLD_LENGTH = 250
TO_PDB = False
SAVE_DIR = ""
# set device
DEVICE = constants.DEVICE
DISTOGRAM_BUCKETS = constants.DISTOGRAM_BUCKETS
# set emebdder model from esm if appropiate - Load ESM-1b model
if FEATURES == "esm":
# from pytorch hub (almost 30gb)
embedd_model, alphabet = torch.hub.load("facebookresearch/esm", "esm1b_t33_650M_UR50S")
batch_converter = alphabet.get_batch_converter()
## alternatively do
# import esm # after installing esm
# model, alphabet = esm.pretrained.esm1b_t33_650M_UR50S()
batch_converter = alphabet.get_batch_converter()
# helpers
def cycle(loader, cond = lambda x: True):
while True:
for data in loader:
if not cond(data):
continue
yield data
# get data
data = scn.load(
casp_version = 12,
thinning = 30,
with_pytorch = 'dataloaders',
batch_size = 1,
dynamic_batching = False
)
data = iter(data['train'])
data_cond = lambda t: t[1].shape[1] < THRESHOLD_LENGTH
dl = cycle(data, data_cond)
# model
model = Alphafold2(
dim = 256,
depth = 1,
heads = 8,
dim_head = 64,
predict_coords = True,
structure_module_dim = 8,
structure_module_depth = 2,
structure_module_heads = 4,
structure_module_dim_head = 16,
structure_module_refinement_iters = 2
).to(DEVICE)
# optimizer
dispersion_weight = 0.1
criterion = nn.MSELoss()
optim = Adam(model.parameters(), lr = LEARNING_RATE)
# training loop
for _ in range(NUM_BATCHES):
for _ in range(GRADIENT_ACCUMULATE_EVERY):
batch = next(dl)
seq, coords, mask = batch.seqs, batch.crds, batch.msks
b, l, _ = seq.shape
# prepare data and mask labels
seq, coords, mask = seq.argmax(dim = -1).to(DEVICE), coords.to(DEVICE), mask.to(DEVICE)
# coords = rearrange(coords, 'b (l c) d -> b l c d', l = l) # no need to rearrange for now
# mask the atoms and backbone positions for each residue
# sequence embedding (msa / esm / attn / or nothing)
msa, embedds = None
# get embedds
if FEATURES == "esm":
embedds = get_esm_embedd(seq, embedd_model, batch_converter)
# get msa here
elif FEATURES == "msa":
pass
# no embeddings
else:
pass
# predict - out is (batch, L * 3, 3)
refined = model(
seq,
msa = msa,
embedds = embedds,
mask = mask
)
# build SC container. set SC points to CA and optionally place carbonyl O
proto_sidechain = sidechain_container(coords_3d, n_aa=batch,
cloud_mask=cloud_mask, place_oxygen=False)
# rotate / align
coords_aligned, labels_aligned = Kabsch(refined, coords[flat_cloud_mask])
# atom mask
cloud_mask = scn_cloud_mask(seq, boolean = False)
flat_cloud_mask = rearrange(cloud_mask, 'b l c -> b (l c)')
# chain_mask is all atoms that will be backpropped thru -> existing + trainable
chain_mask = (mask * cloud_mask)[cloud_mask]
flat_chain_mask = rearrange(chain_mask, 'b l c -> b (l c)')
# save pdb files for visualization
if TO_PDB:
# idx from batch to save prot and label
idx = 0
coords2pdb(seq[idx, :, 0], coords_aligned[idx], cloud_mask, prefix=SAVE_DIR, name="pred.pdb")
coords2pdb(seq[idx, :, 0], labels_aligned[idx], cloud_mask, prefix=SAVE_DIR, name="label.pdb")
# loss - RMSE + distogram_dispersion
loss = torch.sqrt(criterion(coords_aligned[flat_chain_mask], labels_aligned[flat_chain_mask])) + \
dispersion_weight * torch.norm( (1/weights)-1 )
loss.backward()
print('loss:', loss.item())
optim.step()
optim.zero_grad()