diff --git a/_downloads/09b83b84e67dd3bf3bfa9889ef5464d2/linop-5.pdf b/_downloads/09b83b84e67dd3bf3bfa9889ef5464d2/linop-5.pdf index 08c0a6c5..2d3fb43f 100644 Binary files a/_downloads/09b83b84e67dd3bf3bfa9889ef5464d2/linop-5.pdf and b/_downloads/09b83b84e67dd3bf3bfa9889ef5464d2/linop-5.pdf differ diff --git a/_downloads/20331cddc327a7a39c725a1390312abd/linop-16_01.pdf b/_downloads/20331cddc327a7a39c725a1390312abd/linop-16_01.pdf index e883630a..02306316 100644 Binary files a/_downloads/20331cddc327a7a39c725a1390312abd/linop-16_01.pdf and b/_downloads/20331cddc327a7a39c725a1390312abd/linop-16_01.pdf differ diff --git a/_downloads/22bd9057779cffbbbba3ea842436c066/linop-7_00.pdf b/_downloads/22bd9057779cffbbbba3ea842436c066/linop-7_00.pdf index d4a92fb7..5206ecd4 100644 Binary files a/_downloads/22bd9057779cffbbbba3ea842436c066/linop-7_00.pdf and b/_downloads/22bd9057779cffbbbba3ea842436c066/linop-7_00.pdf differ diff --git a/_downloads/274c9a03963857bb2702dadde78475d6/linop-18_02.pdf b/_downloads/274c9a03963857bb2702dadde78475d6/linop-18_02.pdf index 9eb7c281..308ddd21 100644 Binary files a/_downloads/274c9a03963857bb2702dadde78475d6/linop-18_02.pdf and b/_downloads/274c9a03963857bb2702dadde78475d6/linop-18_02.pdf differ diff --git a/_downloads/2d83951329e9139d2f457f163ef557ff/linop-17_01.pdf b/_downloads/2d83951329e9139d2f457f163ef557ff/linop-17_01.pdf index 6c1c6b3e..655e5340 100644 Binary files a/_downloads/2d83951329e9139d2f457f163ef557ff/linop-17_01.pdf and b/_downloads/2d83951329e9139d2f457f163ef557ff/linop-17_01.pdf differ diff --git a/_downloads/38abfa68484834f661723510290a9594/sampler-1_01_00.pdf b/_downloads/38abfa68484834f661723510290a9594/sampler-1_01_00.pdf index 8f5fb268..4a6b9e0b 100644 Binary files a/_downloads/38abfa68484834f661723510290a9594/sampler-1_01_00.pdf and b/_downloads/38abfa68484834f661723510290a9594/sampler-1_01_00.pdf differ diff --git a/_downloads/3efa35127efc146021b2bb00f30126cc/linop-8_00.pdf b/_downloads/3efa35127efc146021b2bb00f30126cc/linop-8_00.pdf index ccf9891b..f57e7467 100644 Binary files a/_downloads/3efa35127efc146021b2bb00f30126cc/linop-8_00.pdf and b/_downloads/3efa35127efc146021b2bb00f30126cc/linop-8_00.pdf differ diff --git a/_downloads/426d2a51889add0a821472e3363e6c86/linop-9_02.pdf b/_downloads/426d2a51889add0a821472e3363e6c86/linop-9_02.pdf index 4b5cbc0d..d586dd70 100644 Binary files a/_downloads/426d2a51889add0a821472e3363e6c86/linop-9_02.pdf and b/_downloads/426d2a51889add0a821472e3363e6c86/linop-9_02.pdf differ diff --git a/_downloads/46ba4351fee97ccd2e3d0aba89e7413d/linop-14.pdf b/_downloads/46ba4351fee97ccd2e3d0aba89e7413d/linop-14.pdf index ab77cd9b..6180393b 100644 Binary files a/_downloads/46ba4351fee97ccd2e3d0aba89e7413d/linop-14.pdf and b/_downloads/46ba4351fee97ccd2e3d0aba89e7413d/linop-14.pdf differ diff --git a/_downloads/502950988dae13ff01ed4781361cfe4d/linop-18_03.pdf b/_downloads/502950988dae13ff01ed4781361cfe4d/linop-18_03.pdf index bde2d899..c4410e66 100644 Binary files a/_downloads/502950988dae13ff01ed4781361cfe4d/linop-18_03.pdf and b/_downloads/502950988dae13ff01ed4781361cfe4d/linop-18_03.pdf differ diff --git a/_downloads/5420c90dcdf9b097dbed8ebf47bc7a03/util-2.pdf b/_downloads/5420c90dcdf9b097dbed8ebf47bc7a03/util-2.pdf index 007a6875..e3535aa2 100644 Binary files a/_downloads/5420c90dcdf9b097dbed8ebf47bc7a03/util-2.pdf and b/_downloads/5420c90dcdf9b097dbed8ebf47bc7a03/util-2.pdf differ diff --git a/_downloads/5b19c3c62ae35eb4489c976153e230f2/linop-9_00.pdf b/_downloads/5b19c3c62ae35eb4489c976153e230f2/linop-9_00.pdf index 9f5f375b..7e16f916 100644 Binary files a/_downloads/5b19c3c62ae35eb4489c976153e230f2/linop-9_00.pdf and b/_downloads/5b19c3c62ae35eb4489c976153e230f2/linop-9_00.pdf differ diff --git a/_downloads/5be70851f96b004b61b84e14faba6d02/util-1.pdf b/_downloads/5be70851f96b004b61b84e14faba6d02/util-1.pdf index 52bb205a..3049def5 100644 Binary files a/_downloads/5be70851f96b004b61b84e14faba6d02/util-1.pdf and b/_downloads/5be70851f96b004b61b84e14faba6d02/util-1.pdf differ diff --git a/_downloads/5d831190e971237b56d4c6f5001a1497/linop-1.pdf b/_downloads/5d831190e971237b56d4c6f5001a1497/linop-1.pdf index e10f94da..86e95ce5 100644 Binary files a/_downloads/5d831190e971237b56d4c6f5001a1497/linop-1.pdf and b/_downloads/5d831190e971237b56d4c6f5001a1497/linop-1.pdf differ diff --git a/_downloads/5ebda40b456c165df2ad890040597b6f/linop-15.pdf b/_downloads/5ebda40b456c165df2ad890040597b6f/linop-15.pdf index 289dd5e5..b12bd185 100644 Binary files a/_downloads/5ebda40b456c165df2ad890040597b6f/linop-15.pdf and b/_downloads/5ebda40b456c165df2ad890040597b6f/linop-15.pdf differ diff --git a/_downloads/5f2c7960744f306a7f67e6f866544db8/abc-1.pdf b/_downloads/5f2c7960744f306a7f67e6f866544db8/abc-1.pdf index 84c4ea55..594e9d3a 100644 Binary files a/_downloads/5f2c7960744f306a7f67e6f866544db8/abc-1.pdf and b/_downloads/5f2c7960744f306a7f67e6f866544db8/abc-1.pdf differ diff --git a/_downloads/612022bbeb60e12bbedb2442f5e9eb14/linop-8_01.pdf b/_downloads/612022bbeb60e12bbedb2442f5e9eb14/linop-8_01.pdf index 62a80370..45e7ada7 100644 Binary files a/_downloads/612022bbeb60e12bbedb2442f5e9eb14/linop-8_01.pdf and b/_downloads/612022bbeb60e12bbedb2442f5e9eb14/linop-8_01.pdf differ diff --git a/_downloads/6f030212e1ed44374360d96af1b8bb08/sampler-1_01_00.png b/_downloads/6f030212e1ed44374360d96af1b8bb08/sampler-1_01_00.png index d5c118bd..e52968f4 100644 Binary files a/_downloads/6f030212e1ed44374360d96af1b8bb08/sampler-1_01_00.png and b/_downloads/6f030212e1ed44374360d96af1b8bb08/sampler-1_01_00.png differ diff --git a/_downloads/720322c27d60e8bdfe2e26d9c52e0397/linop-11.pdf b/_downloads/720322c27d60e8bdfe2e26d9c52e0397/linop-11.pdf index f4b87405..6d5597b8 100644 Binary files a/_downloads/720322c27d60e8bdfe2e26d9c52e0397/linop-11.pdf and b/_downloads/720322c27d60e8bdfe2e26d9c52e0397/linop-11.pdf differ diff --git a/_downloads/76756524613d2983ea3587d04687c2c6/linop-7_01.pdf b/_downloads/76756524613d2983ea3587d04687c2c6/linop-7_01.pdf index 37e6b07c..8e30d568 100644 Binary files a/_downloads/76756524613d2983ea3587d04687c2c6/linop-7_01.pdf and b/_downloads/76756524613d2983ea3587d04687c2c6/linop-7_01.pdf differ diff --git a/_downloads/7bf4f564a15100201d0a1e7baafafa52/opt-solver-2.pdf b/_downloads/7bf4f564a15100201d0a1e7baafafa52/opt-solver-2.pdf index 6faab9b1..540a1060 100644 Binary files a/_downloads/7bf4f564a15100201d0a1e7baafafa52/opt-solver-2.pdf and b/_downloads/7bf4f564a15100201d0a1e7baafafa52/opt-solver-2.pdf differ diff --git a/_downloads/7cceec4a3abf2947afcf0fbf1a95fbc2/linop-9_01.pdf b/_downloads/7cceec4a3abf2947afcf0fbf1a95fbc2/linop-9_01.pdf index ed5fdbec..39c9f786 100644 Binary files a/_downloads/7cceec4a3abf2947afcf0fbf1a95fbc2/linop-9_01.pdf and b/_downloads/7cceec4a3abf2947afcf0fbf1a95fbc2/linop-9_01.pdf differ diff --git a/_downloads/7f5f34fa22392f9857f5e4557ab603eb/linop-18_01.pdf b/_downloads/7f5f34fa22392f9857f5e4557ab603eb/linop-18_01.pdf index 2730783d..6b25a1f7 100644 Binary files a/_downloads/7f5f34fa22392f9857f5e4557ab603eb/linop-18_01.pdf and b/_downloads/7f5f34fa22392f9857f5e4557ab603eb/linop-18_01.pdf differ diff --git a/_downloads/8149e23614b7c5de54fdf55f5a7a75c5/linop-17_00.pdf b/_downloads/8149e23614b7c5de54fdf55f5a7a75c5/linop-17_00.pdf index 1794e12a..c3b706d1 100644 Binary files a/_downloads/8149e23614b7c5de54fdf55f5a7a75c5/linop-17_00.pdf and b/_downloads/8149e23614b7c5de54fdf55f5a7a75c5/linop-17_00.pdf differ diff --git a/_downloads/8186afc1cad5ba418c82646f4dc4c85a/sampler-1_00_00.pdf b/_downloads/8186afc1cad5ba418c82646f4dc4c85a/sampler-1_00_00.pdf index b8e7f92b..6392a160 100644 Binary files a/_downloads/8186afc1cad5ba418c82646f4dc4c85a/sampler-1_00_00.pdf and b/_downloads/8186afc1cad5ba418c82646f4dc4c85a/sampler-1_00_00.pdf differ diff --git a/_downloads/82d6d7024b395a55bfdcd60ed84361df/linop-16_02.pdf b/_downloads/82d6d7024b395a55bfdcd60ed84361df/linop-16_02.pdf index 5c893eab..ad0793c2 100644 Binary files a/_downloads/82d6d7024b395a55bfdcd60ed84361df/linop-16_02.pdf and b/_downloads/82d6d7024b395a55bfdcd60ed84361df/linop-16_02.pdf differ diff --git a/_downloads/852396df1c2a68b4ab13ea440094a13b/linop-2.pdf b/_downloads/852396df1c2a68b4ab13ea440094a13b/linop-2.pdf index 42354b6d..932d14eb 100644 Binary files a/_downloads/852396df1c2a68b4ab13ea440094a13b/linop-2.pdf and b/_downloads/852396df1c2a68b4ab13ea440094a13b/linop-2.pdf differ diff --git a/_downloads/88a3f16ef7fce8fdb35fd4edf3b6ace4/sampler-1_00_00.png b/_downloads/88a3f16ef7fce8fdb35fd4edf3b6ace4/sampler-1_00_00.png index e060dc77..30e297be 100644 Binary files a/_downloads/88a3f16ef7fce8fdb35fd4edf3b6ace4/sampler-1_00_00.png and b/_downloads/88a3f16ef7fce8fdb35fd4edf3b6ace4/sampler-1_00_00.png differ diff --git a/_downloads/9c4ebc29020e065ee3bc3d0953afc0cb/sampler-1_01_00.hires.png b/_downloads/9c4ebc29020e065ee3bc3d0953afc0cb/sampler-1_01_00.hires.png index 0e5c6262..3de49032 100644 Binary files a/_downloads/9c4ebc29020e065ee3bc3d0953afc0cb/sampler-1_01_00.hires.png and b/_downloads/9c4ebc29020e065ee3bc3d0953afc0cb/sampler-1_01_00.hires.png differ diff --git a/_downloads/9eaea73fdea624e0206631a1d44ed0c6/linop-7_03.pdf b/_downloads/9eaea73fdea624e0206631a1d44ed0c6/linop-7_03.pdf index 3686dc54..bae87a55 100644 Binary files a/_downloads/9eaea73fdea624e0206631a1d44ed0c6/linop-7_03.pdf and b/_downloads/9eaea73fdea624e0206631a1d44ed0c6/linop-7_03.pdf differ diff --git a/_downloads/b2643be9761ce6a5244d11d98408529f/linop-13.pdf b/_downloads/b2643be9761ce6a5244d11d98408529f/linop-13.pdf index de2e8086..6b4aab47 100644 Binary files a/_downloads/b2643be9761ce6a5244d11d98408529f/linop-13.pdf and b/_downloads/b2643be9761ce6a5244d11d98408529f/linop-13.pdf differ diff --git a/_downloads/b793257364ec7e73fe09d6ac0cf897bb/linop-3.pdf b/_downloads/b793257364ec7e73fe09d6ac0cf897bb/linop-3.pdf index eb13175a..a30f7d3a 100644 Binary files a/_downloads/b793257364ec7e73fe09d6ac0cf897bb/linop-3.pdf and b/_downloads/b793257364ec7e73fe09d6ac0cf897bb/linop-3.pdf differ diff --git a/_downloads/c0190b5d57d3d151adb5651d8b8a1ee5/linop-10.pdf b/_downloads/c0190b5d57d3d151adb5651d8b8a1ee5/linop-10.pdf index 53205714..0a8797a8 100644 Binary files a/_downloads/c0190b5d57d3d151adb5651d8b8a1ee5/linop-10.pdf and b/_downloads/c0190b5d57d3d151adb5651d8b8a1ee5/linop-10.pdf differ diff --git a/_downloads/c604d2df9d37527a80c0dc91b76cf5db/sampler-1_00_00.hires.png b/_downloads/c604d2df9d37527a80c0dc91b76cf5db/sampler-1_00_00.hires.png index 74123fff..3e09a454 100644 Binary files a/_downloads/c604d2df9d37527a80c0dc91b76cf5db/sampler-1_00_00.hires.png and b/_downloads/c604d2df9d37527a80c0dc91b76cf5db/sampler-1_00_00.hires.png differ diff --git a/_downloads/ce02986c52568fc946d170be6555d837/linop-18_00.pdf b/_downloads/ce02986c52568fc946d170be6555d837/linop-18_00.pdf index 53663271..0ce716f4 100644 Binary files a/_downloads/ce02986c52568fc946d170be6555d837/linop-18_00.pdf and b/_downloads/ce02986c52568fc946d170be6555d837/linop-18_00.pdf differ diff --git a/_downloads/d722bee71da109d7780d99550eacebb8/linop-16_00.pdf b/_downloads/d722bee71da109d7780d99550eacebb8/linop-16_00.pdf index d1893841..6fdac14b 100644 Binary files a/_downloads/d722bee71da109d7780d99550eacebb8/linop-16_00.pdf and b/_downloads/d722bee71da109d7780d99550eacebb8/linop-16_00.pdf differ diff --git a/_downloads/db9ac5fbbfe21a45f644cc919f758da2/opt-solver-1.pdf b/_downloads/db9ac5fbbfe21a45f644cc919f758da2/opt-solver-1.pdf index 9848960e..f67f408e 100644 Binary files a/_downloads/db9ac5fbbfe21a45f644cc919f758da2/opt-solver-1.pdf and b/_downloads/db9ac5fbbfe21a45f644cc919f758da2/opt-solver-1.pdf differ diff --git a/_downloads/e8cf3ce50f34b6ff0831d06aeebabca8/linop-6.pdf b/_downloads/e8cf3ce50f34b6ff0831d06aeebabca8/linop-6.pdf index c0d8ab4c..42710fa3 100644 Binary files a/_downloads/e8cf3ce50f34b6ff0831d06aeebabca8/linop-6.pdf and b/_downloads/e8cf3ce50f34b6ff0831d06aeebabca8/linop-6.pdf differ diff --git a/_downloads/ef375de8a555744bde8d66d2be4d2ecd/linop-4.pdf b/_downloads/ef375de8a555744bde8d66d2be4d2ecd/linop-4.pdf index cac5af96..7100fe6e 100644 Binary files a/_downloads/ef375de8a555744bde8d66d2be4d2ecd/linop-4.pdf and b/_downloads/ef375de8a555744bde8d66d2be4d2ecd/linop-4.pdf differ diff --git a/_downloads/f8ee9bb8e004715b22514fc6afbb3a71/linop-7_02.pdf b/_downloads/f8ee9bb8e004715b22514fc6afbb3a71/linop-7_02.pdf index f817b0db..1a23a6a8 100644 Binary files a/_downloads/f8ee9bb8e004715b22514fc6afbb3a71/linop-7_02.pdf and b/_downloads/f8ee9bb8e004715b22514fc6afbb3a71/linop-7_02.pdf differ diff --git a/_images/sampler-1_00_00.png b/_images/sampler-1_00_00.png index e060dc77..30e297be 100644 Binary files a/_images/sampler-1_00_00.png and b/_images/sampler-1_00_00.png differ diff --git a/_images/sampler-1_01_00.png b/_images/sampler-1_01_00.png index d5c118bd..e52968f4 100644 Binary files a/_images/sampler-1_01_00.png and b/_images/sampler-1_01_00.png differ diff --git a/_parse_plugins/plugins.db b/_parse_plugins/plugins.db index d0a781e4..cc6f80a3 100644 Binary files a/_parse_plugins/plugins.db and b/_parse_plugins/plugins.db differ diff --git a/api/abc.html b/api/abc.html index b6cfa095..0bfdd9ea 100644 --- a/api/abc.html +++ b/api/abc.html @@ -304,7 +304,7 @@
Bases: object
Bases: object
General arithmetic rule.
This class defines default arithmetic rules applicable unless re-defined by sub-classes.
@@ -433,7 +433,7 @@Bases: Enum
Bases: Enum
Mathematical property.
See also
@@ -747,7 +747,7 @@Instance methods affected by arithmetic operations.
@@ -755,7 +755,7 @@Bases: object
Bases: object
Abstract Base Class for Pyxu operators.
Goals:
Return shape of operator’s domain. (M1,…,MD)
Return size of operator’s domain. (M1*…*MD)
Return shape of operator’s co-domain. (N1,…,NK)
Return size of operator’s co-domain. (N1*…*NK)
Return rank of operator’s co-domain. (K)
Mathematical properties of the operator.
Verify if operator possesses supplied properties.
prop (Property | Collection[Property])
+prop (Property | Collection[Property])
The interface of cast_to
is provided via encapsulation + forwarding.
If self
does not implement all methods from cast_to
, then unimplemented methods will raise
-NotImplementedError
when called.
NotImplementedError
when called.
axes (Integral | tuple[Integral, ...])
+axes (Integral | tuple[Integral, ...])
+codim_shape (Integral | tuple[Integral, ...])
+codim_shape (Integral | tuple[Integral, ...])
+chunks (dict)
+chunks (dict)
Mathematical properties of the operator.
Return the last computed Lipschitz constant of \(\mathbf{f}\).
Notes
Compute a Lipschitz constant of the operator.
kwargs (Mapping
) – Class-specific kwargs to configure Lipschitz estimation.
kwargs (Mapping
) – Class-specific kwargs to configure Lipschitz estimation.
Notes
@@ -1279,8 +1279,8 @@Return the last computed Lipschitz constant of \(\mathbf{J}_{\mathbf{f}}\).
Notes
Compute a Lipschitz constant of jacobian()
.
kwargs (Mapping
) – Class-specific kwargs to configure diff-Lipschitz estimation.
kwargs (Mapping
) – Class-specific kwargs to configure diff-Lipschitz estimation.
Notes
@@ -1415,8 +1415,8 @@Q (PosDefOp
) – Positive-definite operator. (Default: Identity)
c (LinFunc
) – Linear functional. (Default: NullFunc)
t (Real
) – Offset. (Default: 0)
Notes
@@ -1787,9 +1787,9 @@arr (NDArray
) – (…, N1,…,NK) input points.
damp (Real
) – Positive dampening factor regularizing the pseudo-inverse.
kwargs_init (Mapping
) – Optional kwargs to be passed to CG()
’s __init__()
method.
kwargs_fit (Mapping
) – Optional kwargs to be passed to CG()
’s fit()
method.
kwargs_init (Mapping
) – Optional kwargs to be passed to CG()
’s __init__()
method.
kwargs_fit (Mapping
) – Optional kwargs to be passed to CG()
’s fit()
method.
damp (Real
) – Positive dampening factor regularizing the pseudo-inverse.
kwargs_init (Mapping
) – Optional kwargs to be passed to CG()
’s __init__()
method.
kwargs_fit (Mapping
) – Optional kwargs to be passed to CG()
’s fit()
method.
kwargs_init (Mapping
) – Optional kwargs to be passed to CG()
’s __init__()
method.
kwargs_fit (Mapping
) – Optional kwargs to be passed to CG()
’s fit()
method.
dim_rank (Integer
) – Dimension rank \(D\). (Can be omitted if A
is 2D.)
enable_warnings (bool
) – If True
, emit a warning in case of precision mis-match issues.
enable_warnings (bool
) – If True
, emit a warning in case of precision mis-match issues.
If hutchpp
, compute an approximation. (Default)
kwargs (Mapping
) –
Optional kwargs passed to:
+kwargs (Mapping
) –
Optional kwargs passed to:
explicit
: trace()
hutchpp
: hutchpp()
Bases: object
Bases: object
Iterative solver for minimization problems of the form \(\hat{x} = \arg\min_{x \in \mathbb{R}^{M_{1} \times\cdots\times M_{D}}} \mathcal{F}(x)\), where the form of \(\mathcal{F}\) is solver-dependent.
Solver provides a versatile API for solving optimisation problems, with the following features:
@@ -2161,24 +2161,24 @@folder (Path
) – Directory on disk where instance data should be stored. A location will be automatically chosen if
unspecified. (Default: OS-dependent tempdir.)
exist_ok (bool
) – If folder
is specified and exist_ok
is false (default), FileExistsError
is raised if the
+
exist_ok (bool
) – If folder
is specified and exist_ok
is false (default), FileExistsError
is raised if the
target directory already exists.
stop_rate (Integer
) – Rate at which solver evaluates stopping criteria.
writeback_rate (Integer
) –
Rate at which solver checkpoints are written to disk:
@@ -2201,7 +2201,7 @@verbosity (Integer
) – Rate at which stopping criteria statistics are logged. Must be a multiple of stop_rate
. Defaults to
stop_rate
if unspecified.
show_progress (bool
) – If True (default) and fit()
is run with mode=BLOCK, then statistics are also
+
show_progress (bool
) – If True (default) and fit()
is run with mode=BLOCK, then statistics are also
logged to stdout.
log_var (VarName
) – Variables from the solver’s math-state (_mstate
) to be logged per iteration.
These are the variables made available when calling stats()
.
track_objective (bool
) – Auto-compute objective function every time stopping criterion is evaluated.
track_objective (bool
) – Auto-compute objective function every time stopping criterion is evaluated.
Generator of logged variables after each iteration.
-The i-th call to next()
on this object returns the logged variables after the i-th solver iteration.
The i-th call to next()
on this object returns the logged variables after the i-th solver iteration.
This method is only usable after calling fit()
with mode=MANUAL. See
Solver
for usage examples.
There is no guarantee that a checkpoint on disk exists when the generator is exhausted. (Reason: potential @@ -2267,14 +2267,14 @@
n (Integer
) –
Maximum number of next()
calls allowed before exhausting the generator. Defaults to infinity if
+
n (Integer
) –
Maximum number of next()
calls allowed before exhausting the generator. Defaults to infinity if
unspecified.
The generator will terminate prematurely if the solver naturally stops before n
calls to next()
+
The generator will terminate prematurely if the solver naturally stops before n
calls to next()
are made.
data (Mapping
) – Value(s) of log_var
(s) after last iteration.
history (numpy.ndarray
, None
) – (N_iter,) records of stopping-criteria values sampled every stop_rate
iteration.
data (Mapping
) – Value(s) of log_var
(s) after last iteration.
history (numpy.ndarray
, None
) – (N_iter,) records of stopping-criteria values sampled every stop_rate
iteration.
tuple[dict[str, Real | NDArray | None], ndarray | None]
+Notes
@@ -2299,7 +2299,7 @@wd – Absolute path to the directory on disk where instance data is stored.
@@ -2311,7 +2311,7 @@lf – Absolute path to the log file on disk where stopping criteria statistics are logged.
@@ -2323,7 +2323,7 @@df – Absolute path to the file on disk where log_var
(s) are stored during checkpointing or after solver has
@@ -2345,7 +2345,7 @@
b – True if solver has stopped, False otherwise.
Bases: Enum
Bases: Enum
Solver execution mode.
Bases: object
Bases: object
State machines (SM) which decide when to stop iterative solvers by examining their mathematical state.
SM decisions are always accompanied by at least one numerical statistic. These stats may be queried by solvers via
info()
to provide diagnostic information to users.
Compute a stop signal based on the current mathematical state.
state (Mapping
) –
Full mathematical state of solver at some iteration, i.e. _mstate
.
state (Mapping
) –
Full mathematical state of solver at some iteration, i.e. _mstate
.
Values from state
may be cached inside the instance to form complex stopping conditions.
s – True if no further iterations should be performed, False otherwise.
data
gamma (Real
) – Euler-Maruyama discretization step of the Langevin equation (see Notes
of
ULA
documentation).
lamb (Real
) – Moreau-Yosida envelope parameter for g
.
NDArray
dtype specifier.
alias of Integral
alias of Integral
Supported dense array types.
Bases: Enum
Bases: Enum
Supported dense array backends.
@@ -566,7 +566,7 @@Find array backend suitable for in-memory CPU/GPU computing.
gpu (bool)
+gpu (bool)
Python module associated to an array backend.
linalg (bool
) – Return the linear-algebra submodule with identical API to numpy.linalg
.
linalg (bool
) – Return the linear-algebra submodule with identical API to numpy.linalg
.
Bases: Enum
Bases: Enum
Supported sparse array backends.
@@ -644,10 +644,10 @@Python module associated to an array backend.
linalg (bool
) – Return the linear-algebra submodule with identical API to scipy.sparse.linalg
.
linalg (bool
) – Return the linear-algebra submodule with identical API to scipy.sparse.linalg
.
List of all supported dense array types in current Pyxu install.
List of all supported dense array modules in current Pyxu install.
List of all supported sparse array types in current Pyxu install.
List of all supported sparse array modules in current Pyxu install.
Alias of numbers.Real
.
Alias of numbers.Real
.
Variable name(s).
-alias of str
| Collection
[str
]
alias of str
| Collection
[str
]
Bases: UserWarning
Bases: UserWarning
Parent class of all warnings raised in Pyxu.
This method is aware of its context and prints the name of the enclosing function/method which invoked it.
OpC
) – Operator sub-class to instantiate.
dim_shape (NDArrayShape
) – Operator domain shape (M1,…,MD).
codim_shape (NDArrayShape
) – Operator co-domain shape (N1,…,NK).
embed (dict
) –
(k[str], v[value]) pairs to embed into the created operator.
+embed (dict
) –
(k[str], v[value]) pairs to embed into the created operator.
embed
is useful to attach extra information to synthesized Operator
used by arithmetic
methods.
kwargs (dict
) –
(k[str], v[callable]) pairs to use as arithmetic methods.
+kwargs (dict
) –
(k[str], v[callable]) pairs to use as arithmetic methods.
Keys must be entries from arithmetic_methods()
.
Omitted arithmetic attributes/methods default to those provided by cls
.
sp_op (LinearOperator
) – (N, M) Linear CPU/GPU operator compliant with SciPy’s interface.
OpC
) – Operator sub-class to instantiate.
dim_shape (NDArrayShape
) – Operator domain shape (M1,…,MD).
codim_shape (NDArrayShape
) – Operator co-domain shape (N1,…,NK).
kwargs (dict
) –
(k[str], v[callable]) pairs to use as arithmetic methods.
+kwargs (dict
) –
(k[str], v[callable]) pairs to use as arithmetic methods.
Keys are restricted to the following arithmetic methods:
apply(), grad(), prox(), pinv(), adjoint()
VarName
) – Arithmetic methods to vectorize.
vectorize
is useful if an arithmetic method provided to kwargs
does not support stacking dimensions.
jit (bool
) – If True
, JIT-compile JAX-backed arithmetic methods for better performance.
enable_warnings (bool
) – If True
, emit warnings in case of precision/zero-copy issues.
jit (bool
) – If True
, JIT-compile JAX-backed arithmetic methods for better performance.
enable_warnings (bool
) – If True
, emit warnings in case of precision/zero-copy issues.
OpC
) – Operator sub-class to instantiate.
dim_shape (NDArrayShape
) – Operator domain shape (M1,…,MD).
codim_shape (NDArrayShape
) – Operator co-domain shape (N1,…,NK).
kwargs (dict
) –
(k[str], v[callable]) pairs to use as arithmetic methods.
+kwargs (dict
) –
(k[str], v[callable]) pairs to use as arithmetic methods.
Keys are restricted to the following arithmetic methods:
apply(), grad(), prox(), pinv(), adjoint()
VarName
) – Arithmetic methods to vectorize.
vectorize
is useful if an arithmetic method provided to kwargs
does not support stacking dimensions.
jit (bool
) – Currently has no effect (for future-compatibility only). In the future, if True
, then Torch-backed
+
jit (bool
) – Currently has no effect (for future-compatibility only). In the future, if True
, then Torch-backed
arithmetic methods will be JIT-compiled for better performance.
enable_warnings (bool
) – If True
, emit warnings in case of precision/zero-copy issues.
enable_warnings (bool
) – If True
, emit warnings in case of precision/zero-copy issues.
ops (Sequence
( OpT
)) – (Q,) identically-shaped operators to map over inputs.
ops (Sequence
( OpT
)) – (Q,) identically-shaped operators to map over inputs.
op – Stacked (M1,…,MD) -> (Q, N1,…,NK) operator.
@@ -582,7 +582,7 @@ops (Sequence
( OpT
)) – (Q,) identically-shaped operators to zip over inputs.
ops (Sequence
( OpT
)) – (Q,) identically-shaped operators to zip over inputs.
op – Block-diagonal (Q, M1,…,MD) -> (Q, N1,…,NK) operator.
diff --git a/api/operator/func.html b/api/operator/func.html index 412a230a..326ae4b2 100644 --- a/api/operator/func.html +++ b/api/operator/func.html @@ -522,7 +522,7 @@\(\ell_{1}\)-norm, \(\Vert\mathbf{x}\Vert_{1} := \sum_{i} |x_{i}|\).
\(\ell_{2}\)-norm, \(\Vert\mathbf{x}\Vert_{2} := \sqrt{\sum_{i} |x_{i}|^{2}}\).
\(\ell^{2}_{2}\)-norm, \(\Vert\mathbf{x}\Vert^{2}_{2} := \sum_{i} |x_{i}|^{2}\).
@@ -565,7 +565,7 @@alias of Integral
| Sequence
[Integral
] | Sequence
[bool
] | slice
alias of Integral
| Sequence
[Integral
] | Sequence
[bool
] | slice
Notes
@@ -585,7 +585,7 @@Identity operator.
@@ -598,8 +598,8 @@This functional maps any input vector on the null scalar.
dim_shape (Integral | tuple[Integral, ...])
+dim_shape (NDArrayShape
) – (M1,…,MD) shape of operator’s domain.
Defaults to the shape of vec
when omitted.
vec (NDArray
) – Scale factors. If dim_shape
is provided, then vec
must be broadcastable with arrays of size dim_shape
.
enable_warnings (bool
) – If True
, emit a warning in case of precision mis-match issues.
enable_warnings (bool
) – If True
, emit a warning in case of precision mis-match issues.
alias of Integral
| Sequence
[Integral
] | Sequence
[tuple
[Integral
, Integral
]]
alias of Integral
| Sequence
[Integral
] | Sequence
[tuple
[Integral
, Integral
]]
pad_width[k][1]
respectively.Padding mode. +
Padding mode. Multiple forms are accepted:
str: unique mode shared amongst dimensions. @@ -928,8 +928,8 @@
dim_shape (NDArrayShape
) – (M1,…,MD) dimensions of the input \(\mathbf{x} \in \mathbb{C}^{M_{1} \times\cdots\times M_{D}}\).
axes (NDArrayAxis
) – Axes over which to compute the FFT. If not given, all axes are used.
kwargs (dict
) –
Extra kwargs passed to scipy.fft.fftn()
or cupyx.scipy.fft.fftn()
.
kwargs (dict
) –
Extra kwargs passed to scipy.fft.fftn()
or cupyx.scipy.fft.fftn()
.
Supported parameters for scipy.fft.fftn()
are:
@@ -1689,11 +1689,11 @@@@ -1017,8 +1017,8 @@
Transforms
- Parameters:
- @@ -1030,10 +1030,10 @@
Transforms
@@ -1079,7 +1079,7 @@
dim_shape (
NDArrayShape
) – (N1,…,ND) dimensions of the input \(\mathbf{x} \in \mathbb{C}^{N_{1} \times\cdots\times N_{D}}\).- -
axes (
NDArrayAxis
) – Axes over which to compute the CZT. If not given, all axes are used.- -
M (
int
,list(int)
) – Length of the transform per axis.- -
A (
complex
,list(complex)
) – Circular offset from the positive real-axis per axis.- -
W (
complex
,list(complex)
) – Circular spacing between transform points per axis.- +
- +
M (
int
,list(int)
) – Length of the transform per axis.- +
A (
complex
,list(complex)
) – Circular offset from the positive real-axis per axis.- +
W (
complex
,list(complex)
) – Circular spacing between transform points per axis.Stencils & Convo
- class _Stencil(kernel, center)[source]#
-Bases:
+object
Bases:
object
Multi-dimensional JIT-compiled stencil. (Low-level function.)
This low-level class creates a gu-vectorized stencil applicable on multiple inputs simultaneously. Only NUMPY/CUPY arrays are accepted.
@@ -1116,7 +1116,7 @@Stencils & Convo
@@ -1559,7 +1559,7 @@
- @@ -1147,7 +1147,7 @@
Stencils & Convo
arr (
NDArray
) – (…, M1,…,MD) data to process.- -
out (
NDArray
) – (…, M1,…,MD) array to which outputs are written.kwargs (
dict
) –Extra kwargs to configure
+f_jit()
, the Dispatcher instance created by Numba.kwargs (
dict
) –Extra kwargs to configure
f_jit()
, the Dispatcher instance created by Numba.Only relevant for GPU stencils, with values:
- @@ -1474,18 +1474,18 @@
blockspergrid: int
Stencils & Convo
- @@ -1508,7 +1508,7 @@
Stencils & Convo
- -
center (
IndexSpec
) –(i1,…,iD) index of the stencil’s center.
center
defines how a kernel is overlaid on inputs to produce outputs.Boundary conditions. Multiple forms are accepted:
+- -
Boundary conditions. Multiple forms are accepted:
str: unique mode shared amongst dimensions. Must be one of:
@@ -1524,7 +1524,7 @@Stencils & Convo
(See
numpy.pad()
for details.)- +
enable_warnings (
bool
) – IfTrue
, emit a warning in case of precision mis-match issues.enable_warnings (
bool
) – IfTrue
, emit a warning in case of precision mis-match issues.Stencils & Convo
Stencils & Convo @@ -1704,11 +1704,11 @@
Stencils & Convo @@ -1742,11 +1742,11 @@
Stencils & Convo @@ -1771,7 +1771,7 @@
Stencils & Convo
- -
center (
IndexSpec
) –(i1,…,iD) index of the kernel’s center.
center
defines how a kernel is overlaid on inputs to produce outputs.Boundary conditions. Multiple forms are accepted:
+- -
Boundary conditions. Multiple forms are accepted:
str: unique mode shared amongst dimensions. Must be one of:
@@ -1787,8 +1787,8 @@Stencils & Convo
(See
numpy.pad()
for details.)- -
enable_warnings (
bool
) – IfTrue
, emit a warning in case of precision mis-match issues.- +
- +
enable_warnings (
bool
) – IfTrue
, emit a warning in case of precision mis-match issues.
dim_shape (NDArrayShape
) – Shape of the input array.
Size of the moving average kernel.
+Size of the moving average kernel.
If a single integer value is provided, then the moving average filter will have as many dimensions as the input
array. If a tuple is provided, it should contain as many elements as dim_shape
. For example, the size=(1,
3)
will convolve the input image with the filter [[1, 1, 1]] / 3
.
center=size//2
).
For even size
the desired center indices must be provided.
mode (str
, list[str]
) –
Boundary conditions. +
mode (str
, list[str]
) –
Boundary conditions. Multiple forms are accepted:
str: unique mode shared amongst dimensions. @@ -1908,7 +1908,7 @@
(See numpy.pad()
for details.)
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU). Defaults to False
.
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU). Defaults to False
.
dtype (DType
) – Working precision of the linear operator.
dim_shape (NDArrayShape
) – Shape of the input array.
Standard deviation of the Gaussian kernel with smaller sigmas across all axes.
+Standard deviation of the Gaussian kernel with smaller sigmas across all axes.
If a scalar value is provided, then the Gaussian filter will have as many dimensions as the input array.
If a tuple is provided, it should contain as many elements as dim_shape
.
Use 0
to prevent filtering in a given dimension.
For example, the low_sigma=(0, 3)
will convolve the input image in its last dimension.
high_sigma (float
, tuple
, None
) – Standard deviation of the Gaussian kernel with larger sigmas across all axes.
+
high_sigma (float
, tuple
, None
) – Standard deviation of the Gaussian kernel with larger sigmas across all axes.
If None
is given (default), sigmas for all axes are calculated as 1.6 * low_sigma
.
low_truncate (float
, tuple
) – Truncate the filter at this many standard deviations.
+
low_truncate (float
, tuple
) – Truncate the filter at this many standard deviations.
Defaults to 3.0.
high_truncate (float
, tuple
) – Truncate the filter at this many standard deviations.
+
high_truncate (float
, tuple
) – Truncate the filter at this many standard deviations.
Defaults to 3.0.
mode (str
, list[str]
) –
Boundary conditions. +
mode (str
, list[str]
) –
Boundary conditions. Multiple forms are accepted:
str: unique mode shared amongst dimensions. @@ -2028,7 +2028,7 @@
sampling (Real
, list[Real]
) – Sampling step (i.e. distance between two consecutive elements of an array).
Defaults to 1.
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU). Defaults to False
.
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU). Defaults to False
.
dtype (DType
) – Working precision of the linear operator.
gpu (bool)
dtype (dtype[Any] | None | type[Any] | _SupportsDType[dtype[Any]] | str | tuple[Any, int] | tuple[Any, SupportsIndex | Sequence[SupportsIndex]] | list[Any] | _DTypeDict | tuple[Any, Any])
gpu (bool)
dtype (dtype[Any] | None | type[Any] | _SupportsDType[dtype[Any]] | str | tuple[Any, int] | tuple[Any, SupportsIndex | Sequence[SupportsIndex]] | list[Any] | _DTypeDict | tuple[Any, Any])
dim_shape (NDArrayShape
) – Shape of the input array.
mode (str
, list[str]
) –
Boundary conditions. +
mode (str
, list[str]
) –
Boundary conditions. Multiple forms are accepted:
str: unique mode shared amongst dimensions. @@ -2117,7 +2117,7 @@
sampling (Real
, list[Real]
) – Sampling step (i.e. distance between two consecutive elements of an array).
Defaults to 1.
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU). Defaults to False
.
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU). Defaults to False
.
dtype (DType
) – Working precision of the linear operator.
dim_shape (NDArrayShape
) – Shape of the input array.
Compute the edge filter along this axis. If not provided, the edge magnitude is computed.
+Compute the edge filter along this axis. If not provided, the edge magnitude is computed.
This is defined as: np.sqrt(sum([sobel(array, axis=i)**2 for i in range(array.ndim)]) / array.ndim)
The
magnitude is also computed if axis is a sequence.
mode (str
, list[str]
) –
Boundary conditions. +
mode (str
, list[str]
) –
Boundary conditions. Multiple forms are accepted:
str: unique mode shared amongst dimensions. @@ -2194,7 +2194,7 @@
sampling (Real
, list[Real]
) – Sampling step (i.e. distance between two consecutive elements of an array).
Defaults to 1.
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU). Defaults to False
.
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU). Defaults to False
.
dtype (DType
) – Working precision of the linear operator.
dim_shape (NDArrayShape
) – Shape of the input array.
Compute the edge filter along this axis. If not provided, the edge magnitude is computed. This is defined as:
+Compute the edge filter along this axis. If not provided, the edge magnitude is computed. This is defined as:
np.sqrt(sum([prewitt(array, axis=i)**2 for i in range(array.ndim)]) / array.ndim)
The magnitude is also
computed if axis is a sequence.
mode (str
, list[str]
) –
Boundary conditions. +
mode (str
, list[str]
) –
Boundary conditions. Multiple forms are accepted:
str: unique mode shared amongst dimensions. @@ -2271,7 +2271,7 @@
sampling (Real
, list[Real]
) – Sampling step (i.e. distance between two consecutive elements of an array).
Defaults to 1.
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU). Defaults to False
.
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU). Defaults to False
.
dtype (DType
) – Working precision of the linear operator.
dim_shape (NDArrayShape
) – Shape of the input array.
Compute the edge filter along this axis. If not provided, the edge magnitude is computed. This is defined as:
+Compute the edge filter along this axis. If not provided, the edge magnitude is computed. This is defined as:
np.sqrt(sum([scharr(array, axis=i)**2 for i in range(array.ndim)]) / array.ndim)
The magnitude is also
computed if axis is a sequence.
mode (str
, list[str]
) –
Boundary conditions. +
mode (str
, list[str]
) –
Boundary conditions. Multiple forms are accepted:
str: unique mode shared amongst dimensions. @@ -2348,7 +2348,7 @@
sampling (Real
, list[Real]
) – Sampling step (i.e. distance between two consecutive elements of an array).
Defaults to 1.
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU). Defaults to False
.
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU). Defaults to False
.
dtype (DType
) – Working precision of the linear operator.
gpu (bool)
dtype (dtype[Any] | None | type[Any] | _SupportsDType[dtype[Any]] | str | tuple[Any, int] | tuple[Any, SupportsIndex | Sequence[SupportsIndex]] | list[Any] | _DTypeDict | tuple[Any, Any])
parallel (bool)
gpu (bool)
dtype (dtype[Any] | None | type[Any] | _SupportsDType[dtype[Any]] | str | tuple[Any, int] | tuple[Any, SupportsIndex | Sequence[SupportsIndex]] | list[Any] | _DTypeDict | tuple[Any, Any])
parallel (bool)
Bases: object
Bases: object
Partial derivative operator based on Numba stencils.
Notes
scheme (str
, list[str]
) – Type of finite differences: [‘forward, ‘backward, ‘central’].
+
scheme (str
, list[str]
) – Type of finite differences: [‘forward, ‘backward, ‘central’].
Defaults to ‘forward’.
If a string is provided, the same scheme
is assumed for all dimensions.
If a tuple is provided, it should have as many elements as order
.
dim_shape
.mode (str
, list[str]
) –
Boundary conditions. +
mode (str
, list[str]
) –
Boundary conditions. Multiple forms are accepted:
str: unique mode shared amongst dimensions. @@ -2625,7 +2625,7 @@
(See numpy.pad()
for details.)
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU).
+
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU).
Defaults to False
.
dtype (DType
) – Working precision of the linear operator.
sampling (Real
, list[Real]
) – Sampling step (i.e. distance between two consecutive elements of an array).
@@ -2790,7 +2790,7 @@
order
.mode (str
, list[str]
) –
Boundary conditions. +
mode (str
, list[str]
) –
Boundary conditions. Multiple forms are accepted:
str: unique mode shared amongst dimensions. @@ -2807,7 +2807,7 @@
(See numpy.pad()
for details.)
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU).
+
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU).
Defaults to False
.
dtype (DType
) – Working precision of the linear operator.
sampling (Real
, list[Real]
) – Sampling step (i.e., the distance between two consecutive elements of an array).
@@ -2930,7 +2930,7 @@
dim_shape (NDArrayShape
) – (N_1,…,N_D) input dimensions.
directions (Integer
, list[Integer]
, None
) – Gradient directions.
+
directions (Integer
, list[Integer]
, None
) – Gradient directions.
Defaults to None
, which computes the gradient for all directions.
diff_method ('gd'
, 'fd'
) –
Method used to approximate the derivative. Must be one of:
@@ -2939,7 +2939,7 @@’gd’: Gaussian derivative
mode (str
, list[str]
) –
Boundary conditions. +
mode (str
, list[str]
) –
Boundary conditions. Multiple forms are accepted:
str: unique mode shared amongst dimensions. @@ -2956,10 +2956,10 @@
(See numpy.pad()
for details.)
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU).
+
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU).
Defaults to False
.
dtype (DType
) – Working precision of the linear operator.
diff_kwargs (dict
) – Keyword arguments to parametrize partial derivatives (see
+
diff_kwargs (dict
) – Keyword arguments to parametrize partial derivatives (see
finite_difference()
and
gaussian_derivative()
)
dim_shape (NDArrayShape
) – (C, N_1,…,N_D) input dimensions.
directions (Integer
, list[Integer]
, None
) – Gradient directions.
+
directions (Integer
, list[Integer]
, None
) – Gradient directions.
Defaults to None
, which computes the gradient for all directions.
diff_method ("gd"
, "fd"
) –
Method used to approximate the derivative. Must be one of:
@@ -3053,7 +3053,7 @@’gd’: Gaussian derivative
mode (str
, list[str]
) –
Boundary conditions. +
mode (str
, list[str]
) –
Boundary conditions. Multiple forms are accepted:
str: unique mode shared amongst dimensions. @@ -3070,10 +3070,10 @@
(See numpy.pad()
for details.)
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU).
+
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU).
Defaults to False
.
dtype (DType
) – Working precision of the linear operator.
diff_kwargs (dict
) – Keyword arguments to parametrize partial derivatives (see
+
diff_kwargs (dict
) – Keyword arguments to parametrize partial derivatives (see
finite_difference()
and
gaussian_derivative()
)
dim_shape (NDArrayShape
) – (C, N_1,…,N_D) input dimensions.
directions (Integer
, list[Integer]
, None
) – Divergence directions.
+
directions (Integer
, list[Integer]
, None
) – Divergence directions.
Defaults to None
, which computes the divergence for all directions.
diff_method ("gd"
, "fd"
) –
Method used to approximate the derivative. Must be one of:
@@ -3153,7 +3153,7 @@’gd’: Gaussian derivative
mode (str
, list[str]
) –
Boundary conditions. +
mode (str
, list[str]
) –
Boundary conditions. Multiple forms are accepted:
str: unique mode shared amongst dimensions. @@ -3170,10 +3170,10 @@
(See numpy.pad()
for details.)
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU).
+
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU).
Defaults to False
.
dtype (DType
) – Working precision of the linear operator.
diff_kwargs (dict
) – Keyword arguments to parametrize partial derivatives (see
+
diff_kwargs (dict
) – Keyword arguments to parametrize partial derivatives (see
finite_difference()
and
gaussian_derivative()
)
dim_shape (NDArrayShape
) – (N_1,…,N_D) input dimensions.
directions (Integer
, (Integer
, Integer)
, ((Integer
, Integer)
, ...
, (Integer
, Integer))
, 'all'
) – Hessian directions.
+
directions (Integer
, (Integer
, Integer)
, ((Integer
, Integer)
, ...
, (Integer
, Integer))
, 'all'
) – Hessian directions.
Defaults to all
, which computes the Hessian for all directions. (See Notes
.)
diff_method ("gd"
, "fd"
) –
Method used to approximate the derivative. Must be one of:
@@ -3276,7 +3276,7 @@’gd’: Gaussian derivative
mode (str
, list[str]
) –
Boundary conditions. +
mode (str
, list[str]
) –
Boundary conditions. Multiple forms are accepted:
str: unique mode shared amongst dimensions. @@ -3293,10 +3293,10 @@
(See numpy.pad()
for details.)
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU).
+
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU).
Defaults to False
.
dtype (DType
) – Working precision of the linear operator.
diff_kwargs (dict
) – Keyword arguments to parametrize partial derivatives (see
+
diff_kwargs (dict
) – Keyword arguments to parametrize partial derivatives (see
finite_difference()
and
gaussian_derivative()
)
dim_shape (NDArrayShape
) – (N_1,…,N_D) input dimensions.
directions (Integer
, list[Integer]
, None
) – Laplacian directions. Defaults to None
, which computes the Laplacian with all directions.
directions (Integer
, list[Integer]
, None
) – Laplacian directions. Defaults to None
, which computes the Laplacian with all directions.
diff_method ("gd"
, "fd"
) –
Method used to approximate the derivative. Must be one of:
’gd’: Gaussian derivative
mode (str
, list[str]
) –
Boundary conditions. +
mode (str
, list[str]
) –
Boundary conditions. Multiple forms are accepted:
str: unique mode shared amongst dimensions. @@ -3402,10 +3402,10 @@
(See numpy.pad()
for details.)
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU).
+
gpu (bool
) – Input NDArray type (True
for GPU, False
for CPU).
Defaults to False
.
dtype (DType
) – Working precision of the linear operator.
diff_kwargs (dict
) – Keyword arguments to parametrize partial derivatives (see
+
diff_kwargs (dict
) – Keyword arguments to parametrize partial derivatives (see
finite_difference()
and
gaussian_derivative()
)
dim_shape (NDArrayShape
) – Shape of the input array.
order (Integer
) – Which directional derivative (restricted to 1: First or 2: Second, see Notes
).
For order=1
, it can be a single direction (array of size \((D,)\), where \(D\) is the number of
+
For order=1
, it can be a single direction (array of size \((D,)\), where \(D\) is the number of
axes) or spatially-varying directions:
array of size \((D, N_0 \times \ldots \times N_{D-1})\) for order=1
, i.e., one direction per element
@@ -3528,7 +3528,7 @@
’gd’: Gaussian derivative
mode (str
, list[str]
) –
Boundary conditions. +
mode (str
, list[str]
) –
Boundary conditions. Multiple forms are accepted:
str: unique mode shared amongst dimensions. @@ -3545,7 +3545,7 @@
(See numpy.pad()
for details.)
diff_kwargs (dict
) – Keyword arguments to parametrize partial derivatives (see
+
diff_kwargs (dict
) – Keyword arguments to parametrize partial derivatives (see
finite_difference()
and
gaussian_derivative()
)
’gd’: Gaussian derivative
mode (str
, list[str]
) –
Boundary conditions. +
mode (str
, list[str]
) –
Boundary conditions. Multiple forms are accepted:
str: unique mode shared amongst dimensions. @@ -3647,7 +3647,7 @@
(See numpy.pad()
for details.)
diff_kwargs (dict
) – Keyword arguments to parametrize partial derivatives (see
+
diff_kwargs (dict
) – Keyword arguments to parametrize partial derivatives (see
finite_difference()
and
gaussian_derivative()
)
dim_shape (NDArrayShape
) – Shape of the input array.
directions (list[NDArray]
) – List of directions, either constant (array of size \((D,)\)) or spatially-varying (array of size
\((D, N_0, \ldots, N_{D-1})\))
weights (list[Real]
, None
) – List of optional positive weights with which each second directional derivative operator is multiplied.
weights (list[Real]
, None
) – List of optional positive weights with which each second directional derivative operator is multiplied.
diff_method ("gd"
, "fd"
) –
Method used to approximate the derivative. Must be one of:
’fd’ (default): finite differences
’gd’: Gaussian derivative
mode (str
, list[str]
) –
Boundary conditions. +
mode (str
, list[str]
) –
Boundary conditions. Multiple forms are accepted:
str: unique mode shared amongst dimensions. @@ -3764,7 +3764,7 @@
(See numpy.pad()
for details.)
diff_kwargs (dict
) – Keyword arguments to parametrize partial derivatives (see
+
diff_kwargs (dict
) – Keyword arguments to parametrize partial derivatives (see
finite_difference()
and
gaussian_derivative()
)
’gd’: Gaussian derivative
mode (str
, list[str]
) –
Boundary conditions. +
mode (str
, list[str]
) –
Boundary conditions. Multiple forms are accepted:
str: unique mode shared amongst dimensions. @@ -3879,7 +3879,7 @@
(See numpy.pad()
for details.)
diff_kwargs (dict
) – Keyword arguments to parametrize partial derivatives (see
+
diff_kwargs (dict
) – Keyword arguments to parametrize partial derivatives (see
finite_difference()
and
gaussian_derivative()
)
dim_shape (NDArrayShape
)
chunks (dict
) –
(ax -> chunk_size) mapping, where chunk_size
can be:
chunks (dict
) –
(ax -> chunk_size) mapping, where chunk_size
can be:
int (non-negative)
tuple[int]
Notes
@@ -2388,9 +2388,9 @@arr (NDArray
) – (…, N1,…,NK) input points.
damp (Real
) – Positive dampening factor regularizing the pseudo-inverse.
kwargs_init (Mapping
) – Optional kwargs to be passed to CG()
’s __init__()
method.
kwargs_fit (Mapping
) – Optional kwargs to be passed to CG()
’s fit()
method.
kwargs_init (Mapping
) – Optional kwargs to be passed to CG()
’s __init__()
method.
kwargs_fit (Mapping
) – Optional kwargs to be passed to CG()
’s fit()
method.
damp (Real
) – Positive dampening factor regularizing the pseudo-inverse.
kwargs_init (Mapping
) – Optional kwargs to be passed to CG()
’s __init__()
method.
kwargs_fit (Mapping
) – Optional kwargs to be passed to CG()
’s fit()
method.
kwargs_init (Mapping
) – Optional kwargs to be passed to CG()
’s __init__()
method.
kwargs_fit (Mapping
) – Optional kwargs to be passed to CG()
’s fit()
method.
__init__()
)#f (DiffFunc
, None
)
–
Differentiable function \(\mathcal{F}\).
**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.__init__()
.
fit
x0 (NDArray
)
–
(…, M1,…,MD) initial point(s).
-tau (Real
, None
)
–
Gradient step size. Defaults to \(1 / \beta\) if unspecified.
-acceleration (bool
)
+
acceleration (bool
)
–
If True (default), then use Chambolle & Dossal acceleration scheme.
d (Real
)
–
Chambolle & Dossal acceleration parameter \(d\). Should be greater than 2. Only meaningful if acceleration
is True. Defaults to 75 in unspecified.
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.fit()
.
__i
–
Positive-definite operator \(\mathbf{A}: \mathbb{R}^{M_{1} \times\cdots\times M_{D}} \to \mathbb{R}^{M_{1}
\times\cdots\times M_{D}}\).
**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.__init__()
.
fit
(…, M1,…,MD) \(\mathbf{b}\) terms in the CG cost function.
All problems are solved in parallel.
-x0 (NDArray
, None
)
–
(…, M1,…,MD) initial point(s).
Must be broadcastable with b
if provided. Defaults to 0.
@@ -420,7 +420,7 @@ Parameters (fit
Number of iterations after which restart is applied.
By default, a restart is done after ‘n’ iterations, where ‘n’ corresponds to the dimension of \(\mathbf{A}\).
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.fit()
.
@@ -479,7 +479,7 @@ Parameters (__i
f (DiffFunc
)
–
Differentiable function \(\mathcal{F}\).
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.__init__()
.
@@ -498,12 +498,12 @@ Parameters (fit
“FR”: Fletcher-Reeves variant.
-restart_rate (Integer
, None
)
–
Number of iterations after which restart is applied.
By default, restart is done after \(N\) iterations.
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Optional parameters forwarded to backtracking_linesearch()
.
If a0
is unspecified and \(\nabla f\) is \(\beta\)-Lipschitz continuous, then a0
is auto-chosen as
@@ -625,7 +625,7 @@
Parameters (__i
f (DiffFunc
)
–
Differentiable function \(\mathcal{F}\).
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.__init__()
.
@@ -639,7 +639,7 @@ Parameters (fit
variant (“adam”, “amsgrad”, “padam”)
–
Name of the Adam variant to use. Defaults to “adam”.
-a (Real
, None
)
–
Max normalized gradient step size. Defaults to \(1 / \beta\) if unspecified.
b1 (Real
)
@@ -648,11 +648,11 @@
Parameters (fit
b2 (Real
)
–
2nd-order gradient exponential decay \(\beta_{2} \in [0, 1)\).
-m0 (NDArray
, None
)
–
(…, N) initial 1st-order gradient estimate corresponding to each initial point. Defaults to the null vector if
unspecified.
-v0 (NDArray
, None
)
–
(…, N) initial 2nd-order gradient estimate corresponding to each initial point. Defaults to the null vector if
unspecified.
@@ -665,7 +665,7 @@ Parameters (fit
eps_var (Real
)
–
Avoids division by zero if estimated gradient variance is too small. Defaults to 1e-6.
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.fit()
.
@@ -767,19 +767,19 @@ Remarks#
Parameters (__init__()
)#
-f (DiffFunc
, None
)
–
Differentiable function \(\mathcal{F}\).
-
-
-K (DiffMap
, LinOp
, None
)
–
Differentiable map or linear operator \(\mathcal{K}\).
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.__init__()
.
@@ -790,20 +790,20 @@ Parameters (fit
x0 (NDArray
)
–
(…, N) initial point(s) for the primal variable.
-z0 (NDArray
, None
)
–
(…, M) initial point(s) for the dual variable.
If None
(default), then use K(x0)
as the initial point for the dual variable.
-
-
-
-beta (Real
, None
)
–
Lipschitz constant \(\beta\) of \(\nabla\mathcal{F}\).
If not provided, it will be automatically estimated.
@@ -811,7 +811,7 @@ Parameters (fit
–
Strategy to be employed when setting the hyperparameters (default to 1).
See section below for more details.
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.fit()
.
@@ -979,19 +979,19 @@ Remarks#
Parameters (__init__()
)#
-f (DiffFunc
, None
)
–
Differentiable function \(\mathcal{F}\).
-
-
-K (DiffMap
, LinOp
, None
)
–
Differentiable map or linear operator \(\mathcal{K}\).
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.__init__()
.
@@ -1002,20 +1002,20 @@ Parameters (fit
x0 (NDArray
)
–
(…, N) initial point(s) for the primal variable.
-z0 (NDArray
, None
)
–
(…, M) initial point(s) for the dual variable.
If None
(default), then use K(x0)
as the initial point for the dual variable.
-
-
-
-beta (Real
, None
)
–
Lipschitz constant \(\beta\) of \(\nabla\mathcal{F}\).
If not provided, it will be automatically estimated.
@@ -1023,7 +1023,7 @@ Parameters (fit
–
Strategy to be employed when setting the hyperparameters (default to 1).
See section below for more details.
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.fit()
.
@@ -1129,12 +1129,12 @@ Parameters (fit
- Parameters:
-
-
-K (DiffMap
, LinOp
, None
) – Differentiable map or linear operator \(\mathcal{K}\).
+
+
+K (DiffMap
, LinOp
, None
) – Differentiable map or linear operator \(\mathcal{K}\).
base (CondatVu
, PD3O
) – Specifies the base primal-dual algorithm.
(Default = CondatVu
)
-**kwargs (Mapping
) – Other keyword parameters passed on to pyxu.abc.Solver.__init__()
.
+**kwargs (Mapping
) – Other keyword parameters passed on to pyxu.abc.Solver.__init__()
.
@@ -1171,24 +1171,24 @@ Parameters (fit
x0 (NDArray
)
–
(…, N) initial point(s) for the primal variable.
-z0 (NDArray
, None
)
–
(…, M) initial point(s) for the dual variable.
If None
(default), then use K(x0)
as the initial point for the dual variable.
-
-
-
tuning_strategy (1, 2, 3)
–
Strategy to be employed when setting the hyperparameters (default to 1).
See base
for more details.
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.fit()
.
@@ -1208,7 +1208,7 @@ Parameters (fit
g (ProxFunc | None)
h (ProxFunc | None)
K (DiffMap | None)
-base (Type[_PrimalDualSplitting])
+base (Type[_PrimalDualSplitting])
__init__()
)#f (DiffFunc
, None
)
–
Differentiable function \(\mathcal{F}\).
K (DiffMap
, LinOp
, None
)
–
Differentiable map or linear operator \(\mathcal{K}\).
beta (Real
, None
)
–
Lipschitz constant \(\beta\) of \(\nabla\mathcal{F}\).
If not provided, it will be automatically estimated.
**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.__init__()
.
fit
x0 (NDArray
)
–
(…, N) initial point(s) for the primal variable.
-z0 (NDArray
, None
)
–
(…, M) initial point(s) for the dual variable.
If None
(default), then use K(x0)
as the initial point for the dual variable.
-
-
-
tuning_strategy (1, 2, 3)
–
Strategy to be employed when setting the hyperparameters (default to 1).
See PD3O
for more details.
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.fit()
.
@@ -1346,17 +1346,17 @@ Parameters (__i
f (DiffFunc
)
–
Differentiable function \(\mathcal{F}\).
-
-
-beta (Real
, None
)
–
Lipschitz constant \(\beta\) of \(\nabla\mathcal{F}\).
If not provided, it will be automatically estimated.
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.__init__()
.
@@ -1367,24 +1367,24 @@ Parameters (fit
x0 (NDArray
)
–
(…, N) initial point(s) for the primal variable.
-z0 (NDArray
, None
)
–
(…, N) initial point(s) for the dual variable.
If None
(default), then use x0
as the initial point for the dual variable.
-
-
-
tuning_strategy (1, 2, 3)
–
Strategy to be employed when setting the hyperparameters (default to 1).
See PD3O
for more details.
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.fit()
.
@@ -1415,11 +1415,11 @@ Parameters (fit
- Parameters:
-
-
+
+
base (CondatVu
, PD3O
) – Specifies the base primal-dual algorithm.
(Default = CondatVu
)
-**kwargs (Mapping
) – Other keyword parameters passed on to pyxu.abc.Solver.__init__()
.
+**kwargs (Mapping
) – Other keyword parameters passed on to pyxu.abc.Solver.__init__()
.
@@ -1448,14 +1448,14 @@ Parameters (fit
x0 (NDArray
)
–
(…, N) initial point(s) for the primal variable.
-z0 (NDArray
, None
)
–
(…, N) initial point(s) for the dual variable.
If None
(default), then use x0
as the initial point for the dual variable.
-
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.fit()
.
@@ -1474,7 +1474,7 @@ Parameters (fit
@@ -1510,17 +1510,17 @@ Remarks#
Parameters (__init__()
)#
-f (DiffFunc
, None
)
–
Differentiable function \(\mathcal{F}\).
-
-beta (Real
, None
)
–
Lipschitz constant \(\beta\) of \(\nabla\mathcal{F}\).
If not provided, it will be automatically estimated.
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.__init__()
.
@@ -1531,21 +1531,21 @@ Parameters (fit
x0 (NDArray
)
–
(…, N) initial point(s) for the primal variable.
-z0 (NDArray
, None
)
–
(…, N) initial point(s) for the dual variable.
If None
(default), then use x0
as the initial point for the dual variable.
-
-
tuning_strategy (1, 2, 3)
–
Strategy to be employed when setting the hyperparameters (default to 1).
See CondatVu
for more details.
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.fit()
.
@@ -1578,7 +1578,7 @@ Parameters (fit
g (ProxFunc
) – Proximable function \(\mathcal{G}\).
base (CondatVu
, PD3O
) – Specifies the base primal-dual algorithm from which mathematical updates are inherited.
(Default = CondatVu
)
-**kwargs (Mapping
) – Other keyword parameters passed on to pyxu.abc.Solver.__init__()
.
+**kwargs (Mapping
) – Other keyword parameters passed on to pyxu.abc.Solver.__init__()
.
@@ -1602,13 +1602,13 @@ Parameters (fit
x0 (NDArray
)
–
(…, N) initial point(s) for the primal variable.
-
-
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.fit()
.
@@ -1699,27 +1699,27 @@ Remarks#
Parameters (__init__()
)#
-f (DiffFunc
, ProxFunc
, None
)
–
Differentiable or proximable function \(\mathcal{F}\).
-
-
-solver (Callable
, None
)
–
Custom callable to solve the \(\mathbf{x}\)-minimization step (1).
If provided, solver
must have the NumPy signature (n), (1) -> (n)
.
-solver_kwargs (Mapping
)
+
solver_kwargs (Mapping
)
–
Keyword parameters passed to the __init__()
method of sub-iterative CG
or
NLCG
solvers.
solver_kwargs
is ignored if solver
provided.
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.__init__()
.
@@ -1730,27 +1730,27 @@ Parameters (fit
x0 (NDArray
)
–
(…, N) initial point(s) for the primal variable.
-z0 (NDArray
, None
)
–
(…, M) initial point(s) for the dual variable.
If None
(default), then use K(x0)
as the initial point for the dual variable.
-
-
tuning_strategy (1, 2, 3)
–
Strategy to be employed when setting the hyperparameters (default to 1).
See base class for more details.
-solver_kwargs (Mapping
)
+
solver_kwargs (Mapping
)
–
Keyword parameters passed to the fit()
method of sub-iterative
CG
or NLCG
solvers.
solver_kwargs
is ignored if solver
was provided in __init__()
.
-**kwargs (Mapping
)
+
**kwargs (Mapping
)
–
Other keyword parameters passed on to pyxu.abc.Solver.fit()
.
@@ -1842,8 +1842,8 @@ Parameters (fit
f (Func | None)
h (ProxFunc | None)
K (DiffMap | None)
-
-solver_kwargs (dict | None)
+
+solver_kwargs (dict | None)
diff --git a/api/opt.stop.html b/api/opt.stop.html
index 53cc4133..0b011522 100644
--- a/api/opt.stop.html
+++ b/api/opt.stop.html
@@ -518,7 +518,7 @@ pyxu.opt.stop
Parameters:
-n (Integral)
+n (Integral)
@@ -558,7 +558,7 @@ pyxu.opt.stop
- Parameters:
-t (timedelta)
+t (timedelta)
@@ -566,7 +566,7 @@ pyxu.opt.stop__init__
(t)[source]#
@@ -581,7 +581,7 @@ pyxu.opt.stopSolver
.)
- Parameters:
-var (str | Collection[str])
+var (str | Collection[str])
@@ -604,12 +604,12 @@ pyxu.opt.stop
- Parameters:
-
@@ -623,14 +623,14 @@ pyxu.opt.stopVarName
) – Variable in pyxu.abc.Solver._mstate
to query.
Must hold an NDArray.
rank (Integer
) – Array rank K of monitored variable after applying f
. (See below.)
-f (Callable
) –
Optional function to pre-apply to _mstate[var]
before applying the norm. Defaults to the identity
+
f (Callable
) –
Optional function to pre-apply to _mstate[var]
before applying the norm. Defaults to the identity
function. The callable should have the same semantics as apply()
:
(…, M1,…,MD) -> (…, N1,…,NK)
-satisfy_all (bool
) – If True (default) and _mstate[var]
is multi-dimensional, stop if all evaluation points lie below
+
satisfy_all (bool
) – If True (default) and _mstate[var]
is multi-dimensional, stop if all evaluation points lie below
threshold.
@@ -647,12 +647,12 @@ pyxu.opt.stop
Parameters:
@@ -666,14 +666,14 @@ pyxu.opt.stopVarName
) – Variable in pyxu.abc.Solver._mstate
to query.
Must hold an NDArray
rank (Integer
) – Array rank K of monitored variable after applying f
. (See below.)
-f (Callable
) –
Optional function to pre-apply to _mstate[var]
before applying the norm. Defaults to the identity
+
f (Callable
) –
Optional function to pre-apply to _mstate[var]
before applying the norm. Defaults to the identity
function. The callable should have the same semantics as apply()
:
(…, M1,…,MD) -> (…, N1,…,NK)
-satisfy_all (bool
) – If True (default) and _mstate[var]
is multi-dimensional, stop if all evaluation points lie below
+
satisfy_all (bool
) – If True (default) and _mstate[var]
is multi-dimensional, stop if all evaluation points lie below
threshold.
diff --git a/api/runtime.html b/api/runtime.html
index dc4c62e9..8ad07397 100644
--- a/api/runtime.html
+++ b/api/runtime.html
@@ -504,7 +504,7 @@
-
class Width(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]#
-Bases: Enum
+Bases: Enum
Machine-dependent floating-point types.
@@ -539,7 +539,7 @@
-
class CWidth(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]#
-Bases: Enum
+Bases: Enum
Machine-dependent complex-valued floating-point types.
-
diff --git a/api/util.html b/api/util.html
index 2ef7529d..b050f959 100644
--- a/api/util.html
+++ b/api/util.html
@@ -309,7 +309,7 @@
pyxu.util.array_modul
- Parameters:
-x (object
) – Any object compatible with the interface of NumPy arrays.
+x (object
) – Any object compatible with the interface of NumPy arrays.
fallback (ArrayModule
) – Fallback module if x
is not a NumPy-like array. Default behaviour: raise error if fallback used.
@@ -336,15 +336,15 @@ pyxu.util.array_modul
- Parameters:
i (VarName
) – name of the array-like variable in f
to base dispatch on.
-kwargs (Mapping
) –
-key[str
]: array backend short-name as defined in NDArrayInfo
.
-value[collections.abc.Callable
]: function/method to dispatch to.
+kwargs (Mapping
) –
+key[str
]: array backend short-name as defined in NDArrayInfo
.
+value[collections.abc.Callable
]: function/method to dispatch to.
- Return type:
--
+
-
Notes
@@ -376,18 +376,18 @@ pyxu.util.array_modul
- Parameters:
-*args (object
, list
) – Any number of objects. If it is a dask object, it is evaluated and the result is returned. Non-dask arguments
+
*args (object
, list
) – Any number of objects. If it is a dask object, it is evaluated and the result is returned. Non-dask arguments
are passed through unchanged. Python collections are traversed to find/evaluate dask objects within. (Use
traverse
=False to disable this behavior.)
-mode (str
) – Dask evaluation strategy: compute or persist.
-**kwargs (dict
) – Extra keyword parameters forwarded to dask.compute()
or dask.persist()
.
+mode (str
) – Dask evaluation strategy: compute or persist.
+**kwargs (dict
) – Extra keyword parameters forwarded to dask.compute()
or dask.persist()
.
- Returns:
*cargs – Evaluated objects. Non-dask arguments are passed through unchanged.
- Return type:
--
+
-
@@ -571,12 +571,12 @@ pyxu.util.misc
Parameters:
Return type:
-
+
@@ -589,7 +589,7 @@ pyxu.util.miscparams – (key, value) params as seen in body of func
when called via func(*args, **kwargs)
.
Return type:
-
+
@@ -698,11 +698,11 @@ pyxu.util.operatorParameters:
Return type:
-
+
@@ -712,10 +712,10 @@ pyxu.util.operator
Transform a lone integer into a valid tuple-based shape specifier.
@@ -736,7 +736,7 @@ pyxu.util.operator
g – Function/Method with signature (..., M1,...,MD) -> (..., N1,...,NK)
in parameter i
.
Return type:
-
+
Example
diff --git a/guide/diff_ops.html b/guide/diff_ops.html
index 55ffba87..6285538a 100644
--- a/guide/diff_ops.html
+++ b/guide/diff_ops.html
@@ -292,7 +292,7 @@ Partial Derivatives
\[\mathbf{D} f [n] = f[n+1] - f[n]\]
As we will see below, this is the forward finite difference approximation. This could be implemented in matrix-form, in which case it would look like this:
-
+
Or, it could be instead implemented via a for loop, in which the case of large input signals, would not require storing a large matrix:
[1]:
diff --git a/plot_directive/api/abc-1.pdf b/plot_directive/api/abc-1.pdf
index 84c4ea55..594e9d3a 100644
Binary files a/plot_directive/api/abc-1.pdf and b/plot_directive/api/abc-1.pdf differ
diff --git a/plot_directive/api/experimental/sampler-1_00_00.hires.png b/plot_directive/api/experimental/sampler-1_00_00.hires.png
index 74123fff..3e09a454 100644
Binary files a/plot_directive/api/experimental/sampler-1_00_00.hires.png and b/plot_directive/api/experimental/sampler-1_00_00.hires.png differ
diff --git a/plot_directive/api/experimental/sampler-1_00_00.pdf b/plot_directive/api/experimental/sampler-1_00_00.pdf
index b8e7f92b..6392a160 100644
Binary files a/plot_directive/api/experimental/sampler-1_00_00.pdf and b/plot_directive/api/experimental/sampler-1_00_00.pdf differ
diff --git a/plot_directive/api/experimental/sampler-1_00_00.png b/plot_directive/api/experimental/sampler-1_00_00.png
index e060dc77..30e297be 100644
Binary files a/plot_directive/api/experimental/sampler-1_00_00.png and b/plot_directive/api/experimental/sampler-1_00_00.png differ
diff --git a/plot_directive/api/experimental/sampler-1_01_00.hires.png b/plot_directive/api/experimental/sampler-1_01_00.hires.png
index 0e5c6262..3de49032 100644
Binary files a/plot_directive/api/experimental/sampler-1_01_00.hires.png and b/plot_directive/api/experimental/sampler-1_01_00.hires.png differ
diff --git a/plot_directive/api/experimental/sampler-1_01_00.pdf b/plot_directive/api/experimental/sampler-1_01_00.pdf
index 8f5fb268..4a6b9e0b 100644
Binary files a/plot_directive/api/experimental/sampler-1_01_00.pdf and b/plot_directive/api/experimental/sampler-1_01_00.pdf differ
diff --git a/plot_directive/api/experimental/sampler-1_01_00.png b/plot_directive/api/experimental/sampler-1_01_00.png
index d5c118bd..e52968f4 100644
Binary files a/plot_directive/api/experimental/sampler-1_01_00.png and b/plot_directive/api/experimental/sampler-1_01_00.png differ
diff --git a/plot_directive/api/operator/linop-1.pdf b/plot_directive/api/operator/linop-1.pdf
index e10f94da..86e95ce5 100644
Binary files a/plot_directive/api/operator/linop-1.pdf and b/plot_directive/api/operator/linop-1.pdf differ
diff --git a/plot_directive/api/operator/linop-10.pdf b/plot_directive/api/operator/linop-10.pdf
index 53205714..0a8797a8 100644
Binary files a/plot_directive/api/operator/linop-10.pdf and b/plot_directive/api/operator/linop-10.pdf differ
diff --git a/plot_directive/api/operator/linop-11.pdf b/plot_directive/api/operator/linop-11.pdf
index f4b87405..6d5597b8 100644
Binary files a/plot_directive/api/operator/linop-11.pdf and b/plot_directive/api/operator/linop-11.pdf differ
diff --git a/plot_directive/api/operator/linop-13.pdf b/plot_directive/api/operator/linop-13.pdf
index de2e8086..6b4aab47 100644
Binary files a/plot_directive/api/operator/linop-13.pdf and b/plot_directive/api/operator/linop-13.pdf differ
diff --git a/plot_directive/api/operator/linop-14.pdf b/plot_directive/api/operator/linop-14.pdf
index ab77cd9b..6180393b 100644
Binary files a/plot_directive/api/operator/linop-14.pdf and b/plot_directive/api/operator/linop-14.pdf differ
diff --git a/plot_directive/api/operator/linop-15.pdf b/plot_directive/api/operator/linop-15.pdf
index 289dd5e5..b12bd185 100644
Binary files a/plot_directive/api/operator/linop-15.pdf and b/plot_directive/api/operator/linop-15.pdf differ
diff --git a/plot_directive/api/operator/linop-16_00.pdf b/plot_directive/api/operator/linop-16_00.pdf
index d1893841..6fdac14b 100644
Binary files a/plot_directive/api/operator/linop-16_00.pdf and b/plot_directive/api/operator/linop-16_00.pdf differ
diff --git a/plot_directive/api/operator/linop-16_01.pdf b/plot_directive/api/operator/linop-16_01.pdf
index e883630a..02306316 100644
Binary files a/plot_directive/api/operator/linop-16_01.pdf and b/plot_directive/api/operator/linop-16_01.pdf differ
diff --git a/plot_directive/api/operator/linop-16_02.pdf b/plot_directive/api/operator/linop-16_02.pdf
index 5c893eab..ad0793c2 100644
Binary files a/plot_directive/api/operator/linop-16_02.pdf and b/plot_directive/api/operator/linop-16_02.pdf differ
diff --git a/plot_directive/api/operator/linop-17_00.pdf b/plot_directive/api/operator/linop-17_00.pdf
index 1794e12a..c3b706d1 100644
Binary files a/plot_directive/api/operator/linop-17_00.pdf and b/plot_directive/api/operator/linop-17_00.pdf differ
diff --git a/plot_directive/api/operator/linop-17_01.pdf b/plot_directive/api/operator/linop-17_01.pdf
index 6c1c6b3e..655e5340 100644
Binary files a/plot_directive/api/operator/linop-17_01.pdf and b/plot_directive/api/operator/linop-17_01.pdf differ
diff --git a/plot_directive/api/operator/linop-18_00.pdf b/plot_directive/api/operator/linop-18_00.pdf
index 53663271..0ce716f4 100644
Binary files a/plot_directive/api/operator/linop-18_00.pdf and b/plot_directive/api/operator/linop-18_00.pdf differ
diff --git a/plot_directive/api/operator/linop-18_01.pdf b/plot_directive/api/operator/linop-18_01.pdf
index 2730783d..6b25a1f7 100644
Binary files a/plot_directive/api/operator/linop-18_01.pdf and b/plot_directive/api/operator/linop-18_01.pdf differ
diff --git a/plot_directive/api/operator/linop-18_02.pdf b/plot_directive/api/operator/linop-18_02.pdf
index 9eb7c281..308ddd21 100644
Binary files a/plot_directive/api/operator/linop-18_02.pdf and b/plot_directive/api/operator/linop-18_02.pdf differ
diff --git a/plot_directive/api/operator/linop-18_03.pdf b/plot_directive/api/operator/linop-18_03.pdf
index bde2d899..c4410e66 100644
Binary files a/plot_directive/api/operator/linop-18_03.pdf and b/plot_directive/api/operator/linop-18_03.pdf differ
diff --git a/plot_directive/api/operator/linop-2.pdf b/plot_directive/api/operator/linop-2.pdf
index 42354b6d..932d14eb 100644
Binary files a/plot_directive/api/operator/linop-2.pdf and b/plot_directive/api/operator/linop-2.pdf differ
diff --git a/plot_directive/api/operator/linop-3.pdf b/plot_directive/api/operator/linop-3.pdf
index eb13175a..a30f7d3a 100644
Binary files a/plot_directive/api/operator/linop-3.pdf and b/plot_directive/api/operator/linop-3.pdf differ
diff --git a/plot_directive/api/operator/linop-4.pdf b/plot_directive/api/operator/linop-4.pdf
index cac5af96..7100fe6e 100644
Binary files a/plot_directive/api/operator/linop-4.pdf and b/plot_directive/api/operator/linop-4.pdf differ
diff --git a/plot_directive/api/operator/linop-5.pdf b/plot_directive/api/operator/linop-5.pdf
index 08c0a6c5..2d3fb43f 100644
Binary files a/plot_directive/api/operator/linop-5.pdf and b/plot_directive/api/operator/linop-5.pdf differ
diff --git a/plot_directive/api/operator/linop-6.pdf b/plot_directive/api/operator/linop-6.pdf
index c0d8ab4c..42710fa3 100644
Binary files a/plot_directive/api/operator/linop-6.pdf and b/plot_directive/api/operator/linop-6.pdf differ
diff --git a/plot_directive/api/operator/linop-7_00.pdf b/plot_directive/api/operator/linop-7_00.pdf
index d4a92fb7..5206ecd4 100644
Binary files a/plot_directive/api/operator/linop-7_00.pdf and b/plot_directive/api/operator/linop-7_00.pdf differ
diff --git a/plot_directive/api/operator/linop-7_01.pdf b/plot_directive/api/operator/linop-7_01.pdf
index 37e6b07c..8e30d568 100644
Binary files a/plot_directive/api/operator/linop-7_01.pdf and b/plot_directive/api/operator/linop-7_01.pdf differ
diff --git a/plot_directive/api/operator/linop-7_02.pdf b/plot_directive/api/operator/linop-7_02.pdf
index f817b0db..1a23a6a8 100644
Binary files a/plot_directive/api/operator/linop-7_02.pdf and b/plot_directive/api/operator/linop-7_02.pdf differ
diff --git a/plot_directive/api/operator/linop-7_03.pdf b/plot_directive/api/operator/linop-7_03.pdf
index 3686dc54..bae87a55 100644
Binary files a/plot_directive/api/operator/linop-7_03.pdf and b/plot_directive/api/operator/linop-7_03.pdf differ
diff --git a/plot_directive/api/operator/linop-8_00.pdf b/plot_directive/api/operator/linop-8_00.pdf
index ccf9891b..f57e7467 100644
Binary files a/plot_directive/api/operator/linop-8_00.pdf and b/plot_directive/api/operator/linop-8_00.pdf differ
diff --git a/plot_directive/api/operator/linop-8_01.pdf b/plot_directive/api/operator/linop-8_01.pdf
index 62a80370..45e7ada7 100644
Binary files a/plot_directive/api/operator/linop-8_01.pdf and b/plot_directive/api/operator/linop-8_01.pdf differ
diff --git a/plot_directive/api/operator/linop-9_00.pdf b/plot_directive/api/operator/linop-9_00.pdf
index 9f5f375b..7e16f916 100644
Binary files a/plot_directive/api/operator/linop-9_00.pdf and b/plot_directive/api/operator/linop-9_00.pdf differ
diff --git a/plot_directive/api/operator/linop-9_01.pdf b/plot_directive/api/operator/linop-9_01.pdf
index ed5fdbec..39c9f786 100644
Binary files a/plot_directive/api/operator/linop-9_01.pdf and b/plot_directive/api/operator/linop-9_01.pdf differ
diff --git a/plot_directive/api/operator/linop-9_02.pdf b/plot_directive/api/operator/linop-9_02.pdf
index 4b5cbc0d..d586dd70 100644
Binary files a/plot_directive/api/operator/linop-9_02.pdf and b/plot_directive/api/operator/linop-9_02.pdf differ
diff --git a/plot_directive/api/opt-solver-1.pdf b/plot_directive/api/opt-solver-1.pdf
index 9848960e..f67f408e 100644
Binary files a/plot_directive/api/opt-solver-1.pdf and b/plot_directive/api/opt-solver-1.pdf differ
diff --git a/plot_directive/api/opt-solver-2.pdf b/plot_directive/api/opt-solver-2.pdf
index 6faab9b1..540a1060 100644
Binary files a/plot_directive/api/opt-solver-2.pdf and b/plot_directive/api/opt-solver-2.pdf differ
diff --git a/plot_directive/api/util-1.pdf b/plot_directive/api/util-1.pdf
index 52bb205a..3049def5 100644
Binary files a/plot_directive/api/util-1.pdf and b/plot_directive/api/util-1.pdf differ
diff --git a/plot_directive/api/util-2.pdf b/plot_directive/api/util-2.pdf
index 007a6875..e3535aa2 100644
Binary files a/plot_directive/api/util-2.pdf and b/plot_directive/api/util-2.pdf differ