Skip to content

Commit

Permalink
[llama-mm] Add export-friendly tile position embedding (#6671)
Browse files Browse the repository at this point in the history
Summary:

Before we make a decision on whether torchtune takes this
export-friendly version of `TilePositionEmbedding`, we put it under
`extension/llm` so that users can start to use it.

Added unit tests to make sure the behavior is the same as the reference
implementation in torchtune and export/AOTI/ET all working properly.

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

ghstack-source-id: fe65ec6c590b6579ac68847cd2e3d4a09921b7e5
Pull Request resolved: #6650

Co-authored-by: Mengwei Liu <[email protected]>
  • Loading branch information
pytorchbot and larryliu0820 authored Nov 5, 2024
1 parent 735e019 commit f7e26d7
Show file tree
Hide file tree
Showing 6 changed files with 391 additions and 0 deletions.
14 changes: 14 additions & 0 deletions extension/llm/modules/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
## Export Friendly Modules

Modules in this directory are:
* Extending `torch.nn.Module`.
* Guranteed to work out of the box with `torch.export.export()` and `torch.aot_compile()`.
* Guranteed to be able to work with ExecuTorch.

All modules should be covered by unit tests to make sure they are:
1. giving the same output as the reference implementation in PyTorch or torchtune
2. export friendly
3. AOTI friendly
4. ExecuTorch friendly

Notice that these modules are subject to change (may upstream to torchtune) so proceed with caution.
15 changes: 15 additions & 0 deletions extension/llm/modules/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

from ._position_embeddings import (
replace_tile_positional_embedding,
TilePositionalEmbedding,
)

__all__ = [
"TilePositionalEmbedding",
"replace_tile_positional_embedding",
]
243 changes: 243 additions & 0 deletions extension/llm/modules/_position_embeddings.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,243 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

# An torch.export() friendly version of torchtune's positional embeddings.
# Added torch._check() to make sure guards on symints are enforced.
# See https://github.com/pytorch/torchtune/blob/main/torchtune/models/clip/_position_embeddings.py

import logging
from typing import Any, Dict, Tuple

import torch
import torch.nn.functional as F
from torch import nn

FORMAT = "[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s"
logging.basicConfig(level=logging.INFO, format=FORMAT)


class TilePositionalEmbedding(nn.Module):
"""
Positional embedding for tiles, different for every tile, same for every token within a tile.
Notice that tile is different from patch (token). For details, please check the documentation of
:class:`torchtune.modules.vision_transformer.VisionTransformer`.
Args:
max_num_tiles (int): The maximum number of tiles an image can be divided into.
embed_dim (int): The dimensionality of each tile embedding.
"""

def __init__(
self,
max_num_tiles: int,
embed_dim: int,
):
super().__init__()
self.max_num_tiles = max_num_tiles
self.embed_dim = embed_dim

scale = embed_dim**-0.5
self.embedding = nn.Parameter(
scale * torch.randn(max_num_tiles, max_num_tiles, 1, embed_dim)
)
self.gate = nn.Parameter(torch.zeros(1))

# Register load hook to interpolate positional embeddings
self._register_load_state_dict_pre_hook(self._load_state_dict_hook)

# TODO: Switch to public method after 2.5 is stable
@torch.no_grad()
def _load_state_dict_hook(
self,
state_dict: Dict[str, Any],
prefix: str,
*args: Tuple[Any],
**kwargs: Dict[str, Any],
):
"""
Interpolates positional embeddings to accomodate different number of tiles,
in case the model was instantiated with different
settings than the one you are loading the state dict from.
For more info, check self._dynamic_resize function.
Args:
state_dict (Dict[str, Any]): The state dict to load.
prefix (str): The prefix of the state dict.
*args (Tuple[Any]): Additional positional arguments.
**kwargs (Dict[str, Any]): Additional keyword arguments.
Raises:
ValueError: if the shape of the loaded embedding is not compatible with the current embedding.
ValueError: if max_num_tiles_x, max_num_tiles_y are not equal.
ValueError: if after interpolation, the shape of the loaded embedding is not compatible with the current embedding.
"""

embedding = state_dict.get(prefix + "embedding")

if embedding is not None:

# ckpt pos emb
(
tgt_max_num_tiles_x,
tgt_max_num_tiles_y,
tgt_num_tokens,
tgt_emb,
) = self.embedding.shape

# instantiated pos emb
(
inpt_max_num_tiles_x,
inpt_max_num_tiles_y,
inpt_num_tokens,
inpt_emb,
) = state_dict[prefix + "embedding"].shape

# sanity check
if inpt_num_tokens != tgt_num_tokens or inpt_emb != tgt_emb:
raise ValueError(
"Expected embedding shape to be (..., num_tokens, tgt_emb) to match"
f" but found shapes {self.embedding.shape} and {state_dict[prefix + 'embedding'].shape}"
)

if inpt_max_num_tiles_x != inpt_max_num_tiles_y:
raise ValueError(
"Expected max_num_tiles_x, max_num_tiles_y to be equal but found, but found"
f"(max_num_tiles_x, max_num_tiles_y, 1, embed_dim) = {self.embedding.shape}"
)

# resize ckpt to match instantiated shape
embedding_new = self._resize_position_embedding(
embedding, tgt_max_num_tiles=tgt_max_num_tiles_x
)

# update state dict
state_dict[prefix + "embedding"] = embedding_new
if embedding_new.shape != self.embedding.shape:
raise ValueError(
"Expected embedding shape and embedding_new.shape to match"
f" but found shapes {self.embedding.shape} and {embedding_new.shape}"
)

@staticmethod
def _resize_position_embedding(
embedding: torch.Tensor, tgt_max_num_tiles: int
) -> torch.Tensor:
"""
Interpolates positional embeddings to accomodate a different max_num_tiles. These
are the only dimensions that changes during interpolation.
Args:
embedding (torch.Tensor): torch.Tensor with shape (max_num_tiles, max_num_tiles, 1, embed_dim
tgt_max_num_tiles (int): The number of tiles to resize to.
Returns:
torch.Tensor: The resized embedding.
Example:
>>> import torch
>>> # create dummy embedding
>>> embedding = torch.arange(2*2*2*2).reshape(2, 2, 2, 2).float()
>>> resized_embed = _dynamic_resize(embedding, tgt_max_num_tiles=1)
>>> print(resized_embed.shape)
>>> torch.Size([1, 1, 2, 2])
"""
# set max_num_tiles to the last dimension
embedding = embedding.permute(2, 3, 0, 1)

embedding = F.interpolate(
embedding,
size=(tgt_max_num_tiles, tgt_max_num_tiles),
mode="bilinear",
align_corners=True,
)
# permute to the original shape
embedding = embedding.permute(2, 3, 0, 1)
return embedding

def forward(self, x: torch.Tensor, aspect_ratio: torch.Tensor) -> torch.Tensor:
"""
args:
x (torch.Tensor): torch.Tensor with shape (bsz * n_imgs, n_tiles, n_tokens, embed_dim).
aspect_ratio (torch.Tensor): torch.Tensor with shape (bsz * n_imgs, 2),
representing the aspect ratio of the image before tile-cropping, e.g. (2,1).
returns:
torch.Tensor: The input tensor with added positional embeddings.
"""
bsz_and_n_imgs, n_tiles, n_tokens, embed_dim = x.shape
torch._check(n_tiles <= self.max_num_tiles)

for batch_idx, (n_tiles_h, n_tiles_w) in enumerate(aspect_ratio):
# When we batch images, all are padded to the same amount of tiles.
# The aspect_ratio lets us know the non padded tiles for each image.
# We only add positional encoding to those.
n_tiles_h = n_tiles_h.item()
n_tiles_w = n_tiles_w.item()

n_non_padded_tiles = int(n_tiles_h * n_tiles_w)

# We get only the positional encoding for non padded tiles,
# i.e. n_tiles_h, n_tiles_w.
torch._check_is_size(n_tiles_h)
torch._check_is_size(n_tiles_w)
torch._check(n_tiles_h >= 1)
torch._check(n_tiles_w >= 1)
torch._check(n_tiles_h <= self.max_num_tiles)
torch._check(n_tiles_w <= self.max_num_tiles)
# TODO: Remove this once pytorch/pytorch#120288 is fixed
padded_embedding = F.pad(self.embedding, (0, 0, 0, 0, 0, 1, 0, 1))
pos_embed = padded_embedding[:n_tiles_h, :n_tiles_w, :, :]

# We need to do a clone here in order to make this model export
# friendly as the reshape is collapsing dim 0 and dim 1 into a
# single dim.
pos_embed = pos_embed.clone()
pos_embed = pos_embed.reshape(n_non_padded_tiles, 1, self.embed_dim)

x = F.pad(x, (0, 0, 0, 0, 0, 1, 0, 0))
torch._check_is_size(n_non_padded_tiles)
torch._check(n_non_padded_tiles < x.size(1))
x[batch_idx, :n_non_padded_tiles, :, :] += pos_embed * self.gate.tanh()
x = x[:, :n_tiles, :, :]

return x


def replace_tile_positional_embedding(model: nn.Module) -> nn.Module:
"""
Replace the tile positional embedding from torchtune with an export-friendly one.
Recursively searches the submodules of the model and replaces the tile positional embedding if found.
Args:
model (nn.Module): The model to replace the tile positional embedding in.
Returns:
nn.Module: The model after replacing the tile positional embedding.
"""
from torchtune.models.clip._position_embeddings import (
TilePositionalEmbedding as TuneTilePositionalEmbedding,
)

for name, module in model.named_children():
if isinstance(module, TuneTilePositionalEmbedding):
logging.info(
f"Replacing tile positional embedding in {name} with export-friendly one."
)
max_num_tiles, _, _, embed_dim = module.embedding.shape
mod = TilePositionalEmbedding(
max_num_tiles=max_num_tiles,
embed_dim=embed_dim,
)
mod.load_state_dict(module.state_dict())
setattr(
model,
name,
mod,
)
else:
replace_tile_positional_embedding(module)
return model
Empty file.
118 changes: 118 additions & 0 deletions extension/llm/modules/test/test_position_embeddings.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import os
import tempfile
import unittest

import torch
from executorch.exir import EdgeCompileConfig, to_edge
from executorch.extension.llm.modules import (
replace_tile_positional_embedding,
TilePositionalEmbedding,
)
from executorch.runtime import Runtime
from torch._inductor.package import load_package, package_aoti
from torchtune.models.clip import TilePositionalEmbedding as TuneTilePositionalEmbedding


class TilePositionalEmbeddingTest(unittest.TestCase):
def setUp(self):
super().setUp()
self.tpe = TilePositionalEmbedding(4, 1280)
self.ref_tpe = TuneTilePositionalEmbedding(4, 1280)
self.x = torch.randn(1, 4, 1600, 1280)
self.aspect_ratio = torch.tensor([[1, 1]])
num_tiles_dim = torch.export.Dim("num_tiles", min=1, max=4)
num_tokens = torch.export.Dim("num_tokens", min=1, max=1600)

self.dynamic_shape = {
0: 1, # batch
1: num_tiles_dim, # num tiles
2: num_tokens, # num tokens
3: 1280, # embedding dim
}

def test_tile_positional_embedding_smoke(self):
y = self.tpe(self.x, self.aspect_ratio)
ref_y = self.ref_tpe(self.x, self.aspect_ratio)

self.assertTrue(torch.allclose(y, ref_y))

def test_tile_positional_embedding_export(self):

tpe_ep = torch.export.export(
self.tpe,
(self.x, self.aspect_ratio),
dynamic_shapes=(
self.dynamic_shape,
None,
), # assuming aspect ratio is static
)

y = tpe_ep.module()(self.x, self.aspect_ratio)
ref_y = self.ref_tpe(self.x, self.aspect_ratio)

self.assertTrue(torch.allclose(y, ref_y))

def test_tile_positional_embedding_aoti(self):
so = torch._export.aot_compile(
self.tpe,
args=(self.x, self.aspect_ratio),
options={"aot_inductor.package": True},
dynamic_shapes=(
self.dynamic_shape,
None,
), # assuming aspect ratio is static
)
with tempfile.TemporaryDirectory() as tmpdir:
path = package_aoti(os.path.join(tmpdir, "tpe.pt2"), so)
tpe_aoti = load_package(path)

y = tpe_aoti(self.x, self.aspect_ratio)
ref_y = self.ref_tpe(self.x, self.aspect_ratio)

self.assertTrue(torch.allclose(y, ref_y))

def test_tile_positional_embedding_et(self):
tpe_ep = torch.export.export(
self.tpe,
(self.x, self.aspect_ratio),
dynamic_shapes=(
self.dynamic_shape,
None,
), # assuming aspect ratio is static
)
et_program = to_edge(
tpe_ep,
compile_config=EdgeCompileConfig(
_core_aten_ops_exception_list=[
torch.ops.aten.sym_constrain_range_for_size.default,
torch.ops.aten._assert_scalar.default,
torch.ops.aten._local_scalar_dense.default,
]
),
).to_executorch()
runtime = Runtime.get()
program = runtime.load_program(et_program.buffer)
method = program.load_method("forward")
y = method.execute((self.x, self.aspect_ratio))
ref_y = self.ref_tpe(self.x, self.aspect_ratio)

self.assertTrue(torch.allclose(y[0], ref_y))

def test_replace_tile_positional_embedding(self):
class Module(torch.nn.Module):
def __init__(self):
super().__init__()
self.tpe = TuneTilePositionalEmbedding(4, 1280)

def forward(self, x, aspect_ratio):
return self.tpe(x, aspect_ratio)

m = Module()
m = replace_tile_positional_embedding(m)
self.assertTrue(isinstance(m.tpe, TilePositionalEmbedding))
Loading

0 comments on commit f7e26d7

Please sign in to comment.