From d2a8656a1977739c1ef47f1a09130a681314b388 Mon Sep 17 00:00:00 2001 From: lucylq Date: Fri, 6 Dec 2024 13:54:31 -0800 Subject: [PATCH] [executorch][emit] Refactor _tensor_spec_to_evalue ^ adding more logic to _tensor_spec_to_evalue in the next diff; simplifying it now. Otherwise, linter error on complexity. Differential Revision: [D66847875](https://our.internmc.facebook.com/intern/diff/D66847875/) [ghstack-poisoned] --- exir/emit/_emitter.py | 103 +++++++++++++++++++++++++----------------- 1 file changed, 61 insertions(+), 42 deletions(-) diff --git a/exir/emit/_emitter.py b/exir/emit/_emitter.py index 381bab618c..2d6c066cce 100644 --- a/exir/emit/_emitter.py +++ b/exir/emit/_emitter.py @@ -48,6 +48,7 @@ from executorch.exir.passes.executorch_prim_ops_registry import is_sym_op from executorch.exir.print_program import _stacktrace_to_framelist, inspect_node from executorch.exir.schema import ( + AllocationDetails, BackendDelegate, BackendDelegateDataReference, BackendDelegateInlineData, @@ -328,6 +329,59 @@ def _emit_list(self, val: List[_Argument], val_type: _SchemaType) -> EValue: ExportErrorType.NOT_SUPPORTED, f"Unknown list type: {val_type}" ) + def _get_allocation_info(self, spec: TensorSpec) -> AllocationDetails: + """Returns the allocation info for a given TensorSpec.""" + self._internal_assert_emitter( + isinstance(spec.mem_id, int) and spec.mem_id >= 0, + self.node, + f"Non-const tensor should be an activation tensor: mem_id {spec.mem_id}", + ) + + self._internal_assert_emitter( + isinstance(spec.mem_offset, int) and spec.mem_offset >= 0, + self.node, + f"Non-const tensor should be an activation tensor: mem_offset {spec.mem_offset}", + ) + try: + allocation_info = make_allocation_info(spec.mem_id, spec.mem_offset) + except AddressSpaceOverflowException as e: + raise InternalError( + self._emit_node_specific_error( + self.node, + ( + f"{e}\nHint: If you are using a memory pass based on dynamic shape bounds, " + f"such as ConstraintBasedSymShapeEvalPass, this may be the cause of an " + f"unbacked SymInt with its upper bound lazily set to 2^64-1 (uint64 max) " + "during torch.export()." + ), + ) + ) + return allocation_info + + def _save_new_const_tensor( + self, + spec: TensorSpec, + buffer_data: bytes, + hashed: str, + allocation_info: Optional[AllocationDetails], + ) -> int: + """Saves a new constant tensor to the constant buffer and returns the buffer idx""" + + self.program_state.allocated_specs.append(spec) + # +1 because the first buffer location is reserved. + + # Update buffer_idx to point to the end of the list where we are adding the new buffer. + buffer = Buffer(storage=buffer_data) + if allocation_info: + buffer_idx = len(self.program_state.mutable_buffer) + self.program_state.cached_spec_mutable_hash_values[hashed] = buffer_idx + self.program_state.mutable_buffer.append(buffer) + else: + buffer_idx = len(self.program_state.constant_buffer) + self.program_state.cached_spec_hash_values[hashed] = buffer_idx + self.program_state.constant_buffer.append(buffer) + return buffer_idx + def _tensor_spec_to_evalue(self, spec: TensorSpec) -> EValue: """Constructs an EValue from the given TensorSpec.""" @@ -339,35 +393,12 @@ def _tensor_spec_to_evalue(self, spec: TensorSpec) -> EValue: # default algos to set offsets, so need to check both. if spec.mem_id is not None and spec.mem_offset is not None: # Tensor is an activation. - self._internal_assert_emitter( - isinstance(spec.mem_id, int) and spec.mem_id >= 0, - self.node, - f"Non-const tensor should be an activation tensor: mem_id {spec.mem_id}", - ) - - self._internal_assert_emitter( - isinstance(spec.mem_offset, int) and spec.mem_offset >= 0, - self.node, - f"Non-const tensor should be an activation tensor: mem_offset {spec.mem_offset}", - ) - try: - allocation_info = make_allocation_info(spec.mem_id, spec.mem_offset) - except AddressSpaceOverflowException as e: - raise InternalError( - self._emit_node_specific_error( - self.node, - ( - f"{e}\nHint: If you are using a memory pass based on dynamic shape bounds, " - f"such as ConstraintBasedSymShapeEvalPass, this may be the cause of an " - f"unbacked SymInt with its upper bound lazily set to 2^64-1 (uint64 max) " - "during torch.export()." - ), - ) - ) + allocation_info = self._get_allocation_info(spec) + # Tensor is either a constant tensor, or a mutable tensor with an initial state. if spec.const: # Tensor with a blob we need to serialize. May not actually be constant at runtime - # if it's a weight with an associated gradient + # if it's a weight with an associated gradient. spec_array_type = ( ctypes.c_char * typing.cast(torch.UntypedStorage, spec.storage).nbytes() ) @@ -392,23 +423,11 @@ def _tensor_spec_to_evalue(self, spec: TensorSpec) -> EValue: else: buffer_idx = self.program_state.cached_spec_hash_values.get(hashed, -1) - # Haven't seen this constant before + # Haven't seen this constant before. if buffer_idx == -1: - # Update buffer_idx to point to the end of the list where we are adding the new buffer. - buffer = Buffer(storage=buffer_data) - self.program_state.allocated_specs.append(spec) - # +1 because the first buffer location is reserved - - if allocation_info: - buffer_idx = len(self.program_state.mutable_buffer) - self.program_state.cached_spec_mutable_hash_values[hashed] = ( - buffer_idx - ) - self.program_state.mutable_buffer.append(buffer) - else: - buffer_idx = len(self.program_state.constant_buffer) - self.program_state.cached_spec_hash_values[hashed] = buffer_idx - self.program_state.constant_buffer.append(buffer) + buffer_idx = self._save_new_const_tensor( + spec, buffer_data, hashed, allocation_info + ) if spec.const and spec.nbytes() != len(buffer_data): raise InternalError(