-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmean_reversion_simple.py
289 lines (244 loc) · 9.56 KB
/
mean_reversion_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# For this example, we're going to write a simple momentum script. When the
# stock goes up quickly, we're going to buy; when it goes down quickly, we're
# going to sell. Hopefully we'll ride the waves.
import os
import tempfile
import time
import numpy as np
import pandas as pd
import talib
from logbook import Logger
from catalyst import run_algorithm
from catalyst.api import symbol, record, order_target_percent
from catalyst.exchange.utils.stats_utils import extract_transactions
# We give a name to the algorithm which Catalyst will use to persist its state.
# In this example, Catalyst will create the `.catalyst/data/live_algos`
# directory. If we stop and start the algorithm, Catalyst will resume its
# state using the files included in the folder.
from catalyst.utils.paths import ensure_directory
NAMESPACE = 'mean_reversion_simple'
log = Logger(NAMESPACE)
# To run an algorithm in Catalyst, you need two functions: initialize and
# handle_data.
def initialize(context):
# This initialize function sets any data or variables that you'll use in
# your algorithm. For instance, you'll want to define the trading pair (or
# trading pairs) you want to backtest. You'll also want to define any
# parameters or values you're going to use.
# In our example, we're looking at Neo in Ether.
context.market = symbol('btc_usd')
context.base_price = None
context.current_day = None
context.RSI_OVERSOLD = 60
context.RSI_OVERBOUGHT = 70
context.CANDLE_SIZE = '15T'
context.start_time = time.time()
context.set_commission(maker=0.001, taker=0.002)
context.set_slippage(slippage=0.001)
def handle_data(context, data):
# This handle_data function is where the real work is done. Our data is
# minute-level tick data, and each minute is called a frame. This function
# runs on each frame of the data.
# We flag the first period of each day.
# Since cryptocurrencies trade 24/7 the `before_trading_starts` handle
# would only execute once. This method works with minute and daily
# frequencies.
today = data.current_dt.floor('1D')
if today != context.current_day:
context.traded_today = False
context.current_day = today
# We're computing the volume-weighted-average-price of the security
# defined above, in the context.market variable. For this example, we're
# using three bars on the 15 min bars.
# The frequency attribute determine the bar size. We use this convention
# for the frequency alias:
# http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
prices = data.history(
context.market,
fields='close',
bar_count=50,
frequency=context.CANDLE_SIZE
)
# Ta-lib calculates various technical indicator based on price and
# volume arrays.
# In this example, we are comp
rsi = talib.RSI(prices.values, timeperiod=14)
# We need a variable for the current price of the security to compare to
# the average. Since we are requesting two fields, data.current()
# returns a DataFrame with
current = data.current(context.market, fields=['close', 'volume'])
price = current['close']
# If base_price is not set, we use the current value. This is the
# price at the first bar which we reference to calculate price_change.
if context.base_price is None:
context.base_price = price
price_change = (price - context.base_price) / context.base_price
cash = context.portfolio.cash
# Now that we've collected all current data for this frame, we use
# the record() method to save it. This data will be available as
# a parameter of the analyze() function for further analysis.
record(
volume=current['volume'],
price=price,
price_change=price_change,
rsi=rsi[-1],
cash=cash
)
# We are trying to avoid over-trading by limiting our trades to
# one per day.
if context.traded_today:
return
# TODO: retest with open orders
# Since we are using limit orders, some orders may not execute immediately
# we wait until all orders are executed before considering more trades.
orders = context.blotter.open_orders
if len(orders) > 0:
log.info('exiting because orders are open: {}'.format(orders))
return
# Exit if we cannot trade
if not data.can_trade(context.market):
return
# Another powerful built-in feature of the Catalyst backtester is the
# portfolio object. The portfolio object tracks your positions, cash,
# cost basis of specific holdings, and more. In this line, we calculate
# how long or short our position is at this minute.
pos_amount = context.portfolio.positions[context.market].amount
if rsi[-1] <= context.RSI_OVERSOLD and pos_amount == 0:
log.info(
'{}: buying - price: {}, rsi: {}'.format(
data.current_dt, price, rsi[-1]
)
)
# Set a style for limit orders,
limit_price = price * 1.005
order_target_percent(
context.market, 1, limit_price=limit_price
)
context.traded_today = True
elif rsi[-1] >= context.RSI_OVERBOUGHT and pos_amount > 0:
log.info(
'{}: selling - price: {}, rsi: {}'.format(
data.current_dt, price, rsi[-1]
)
)
limit_price = price * 0.995
order_target_percent(
context.market, 0, limit_price=limit_price
)
context.traded_today = True
def analyze(context=None, perf=None):
end = time.time()
log.info('elapsed time: {}'.format(end - context.start_time))
import matplotlib.pyplot as plt
# The quote currency of the algo exchange
quote_currency = list(context.exchanges.values())[0].quote_currency.upper()
# Plot the portfolio value over time.
ax1 = plt.subplot(611)
perf.loc[:, 'portfolio_value'].plot(ax=ax1)
ax1.set_ylabel('Portfolio\nValue\n({})'.format(quote_currency))
# Plot the price increase or decrease over time.
ax2 = plt.subplot(612, sharex=ax1)
perf.loc[:, 'price'].plot(ax=ax2, label='Price')
ax2.set_ylabel('{asset}\n({quote})'.format(
asset=context.market.symbol, quote=quote_currency
))
transaction_df = extract_transactions(perf)
if not transaction_df.empty:
buy_df = transaction_df[transaction_df['amount'] > 0]
sell_df = transaction_df[transaction_df['amount'] < 0]
ax2.scatter(
buy_df.index.to_pydatetime(),
perf.loc[buy_df.index.floor('1 min'), 'price'],
marker='^',
s=100,
c='green',
label=''
)
ax2.scatter(
sell_df.index.to_pydatetime(),
perf.loc[sell_df.index.floor('1 min'), 'price'],
marker='v',
s=100,
c='red',
label=''
)
ax4 = plt.subplot(613, sharex=ax1)
perf.loc[:, 'cash'].plot(
ax=ax4, label='Quote Currency ({})'.format(quote_currency)
)
ax4.set_ylabel('Cash\n({})'.format(quote_currency))
perf['algorithm'] = perf.loc[:, 'algorithm_period_return']
ax5 = plt.subplot(614, sharex=ax1)
perf.loc[:, ['algorithm', 'price_change']].plot(ax=ax5)
ax5.set_ylabel('Percent\nChange')
ax6 = plt.subplot(615, sharex=ax1)
perf.loc[:, 'rsi'].plot(ax=ax6, label='RSI')
ax6.set_ylabel('RSI')
ax6.axhline(context.RSI_OVERBOUGHT, color='darkgoldenrod')
ax6.axhline(context.RSI_OVERSOLD, color='darkgoldenrod')
if not transaction_df.empty:
ax6.scatter(
buy_df.index.to_pydatetime(),
perf.loc[buy_df.index.floor('1 min'), 'rsi'],
marker='^',
s=100,
c='green',
label=''
)
ax6.scatter(
sell_df.index.to_pydatetime(),
perf.loc[sell_df.index.floor('1 min'), 'rsi'],
marker='v',
s=100,
c='red',
label=''
)
plt.legend(loc=3)
start, end = ax6.get_ylim()
ax6.yaxis.set_ticks(np.arange(0, end, end / 5))
# Show the plot.
plt.gcf().set_size_inches(18, 8)
plt.show()
pass
if __name__ == '__main__':
# The execution mode: backtest or live
live = False
if live:
run_algorithm(
capital_base=0.1,
initialize=initialize,
handle_data=handle_data,
analyze=analyze,
exchange_name='binance',
live=True,
algo_namespace=NAMESPACE,
quote_currency='eth',
live_graph=False,
simulate_orders=False,
stats_output=None,
# auth_aliases=dict(poloniex='auth2')
)
else:
folder = os.path.join(
tempfile.gettempdir(), 'catalyst', NAMESPACE
)
ensure_directory(folder)
timestr = time.strftime('%Y%m%d-%H%M%S')
out = os.path.join(folder, '{}.p'.format(timestr))
# catalyst run -f catalyst/examples/mean_reversion_simple.py \
# -x bitfinex -s 2017-10-1 -e 2017-11-10 -c usdt -n mean-reversion \
# --data-frequency minute --capital-base 10000
run_algorithm(
capital_base=0.035,
data_frequency='minute',
initialize=initialize,
handle_data=handle_data,
analyze=analyze,
exchange_name='bitfinex',
algo_namespace=NAMESPACE,
quote_currency='usd',
start=pd.to_datetime('2017-10-01', utc=True),
end=pd.to_datetime('2017-11-10', utc=True),
output=out
)
log.info('saved perf stats: {}'.format(out))