-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuy_and_hodl.py
148 lines (121 loc) · 4.1 KB
/
buy_and_hodl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#!/usr/bin/env python
#
# Copyright 2017 Enigma MPC, Inc.
# Copyright 2015 Quantopian, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pandas as pd
import matplotlib.pyplot as plt
from catalyst import run_algorithm
from catalyst.api import (order_target_value, symbol, record,
cancel_order, get_open_orders, )
def initialize(context):
context.ASSET_NAME = 'btc_usd'
context.TARGET_HODL_RATIO = 0.8
context.RESERVE_RATIO = 1.0 - context.TARGET_HODL_RATIO
context.is_buying = True
context.asset = symbol(context.ASSET_NAME)
context.i = 0
def handle_data(context, data):
context.i += 1
starting_cash = context.portfolio.starting_cash
target_hodl_value = context.TARGET_HODL_RATIO * starting_cash
reserve_value = context.RESERVE_RATIO * starting_cash
# Cancel any outstanding orders
orders = get_open_orders(context.asset) or []
for order in orders:
cancel_order(order)
# Stop buying after passing the reserve threshold
cash = context.portfolio.cash
if cash <= reserve_value:
context.is_buying = False
# Retrieve current asset price from pricing data
price = data.current(context.asset, 'price')
# Check if still buying and could (approximately) afford another purchase
if context.is_buying and cash > price:
print('buying')
# Place order to make position in asset equal to target_hodl_value
order_target_value(
context.asset,
target_hodl_value,
limit_price=price * 1.1,
)
record(
price=price,
volume=data.current(context.asset, 'volume'),
cash=cash,
starting_cash=context.portfolio.starting_cash,
leverage=context.account.leverage,
)
def analyze(context=None, results=None):
# Plot the portfolio and asset data.
ax1 = plt.subplot(611)
results[['portfolio_value']].plot(ax=ax1)
ax1.set_ylabel('Portfolio\nValue\n(USD)')
ax2 = plt.subplot(612, sharex=ax1)
ax2.set_ylabel('{asset}\n(USD)'.format(asset=context.ASSET_NAME))
results[['price']].plot(ax=ax2)
trans = results.ix[[t != [] for t in results.transactions]]
buys = trans.ix[
[t[0]['amount'] > 0 for t in trans.transactions]
]
ax2.scatter(
buys.index.to_pydatetime(),
results.price[buys.index],
marker='^',
s=100,
c='g',
label=''
)
ax3 = plt.subplot(613, sharex=ax1)
results[['leverage', 'alpha', 'beta']].plot(ax=ax3)
ax3.set_ylabel('Leverage ')
ax4 = plt.subplot(614, sharex=ax1)
results[['starting_cash', 'cash']].plot(ax=ax4)
ax4.set_ylabel('Cash (USD)')
results[[
'treasury',
'algorithm',
'benchmark',
]] = results[[
'treasury_period_return',
'algorithm_period_return',
'benchmark_period_return',
]]
ax5 = plt.subplot(615, sharex=ax1)
results[[
'treasury',
'algorithm',
'benchmark',
]].plot(ax=ax5)
ax5.set_ylabel('Percent\nChange')
ax6 = plt.subplot(616, sharex=ax1)
results[['volume']].plot(ax=ax6)
ax6.set_ylabel('Volume')
plt.legend(loc=3)
# Show the plot.
plt.gcf().set_size_inches(18, 8)
plt.show()
if __name__ == '__main__':
run_algorithm(
capital_base=10000,
data_frequency='daily',
initialize=initialize,
handle_data=handle_data,
analyze=analyze,
exchange_name='bitfinex',
algo_namespace='buy_and_hodl',
quote_currency='usd',
start=pd.to_datetime('2015-03-01', utc=True),
end=pd.to_datetime('2017-10-31', utc=True),
)