forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simulate_nccl_errors.py
42 lines (37 loc) · 1.6 KB
/
simulate_nccl_errors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import argparse
import logging
import os
import torch
import torch.distributed as c10d
logging.basicConfig(
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=logging.INFO
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Simple script to simulate NCCL errors. The script is "
"supposed to be run on multiple different nodes simultaneously with "
"appropriate rank and world_size. The script run an allreduce() on "
"the rank 0 node and aborts all the other nodes to simulate an error "
"in NCCL"
)
parser.add_argument("addr", help="address of the master node to connect to.")
parser.add_argument("port", help="port of the master node to connect to.")
parser.add_argument("rank", help="rank of this node")
parser.add_argument("world_size", help="number of nodes in process group")
args = parser.parse_args()
rank = int(args.rank)
world_size = int(args.world_size)
port = int(args.port)
store = c10d.TCPStore(args.addr, port, world_size, rank == 0)
process_group = c10d.ProcessGroupNCCL(store, rank, world_size)
logging.info("Running first allreduce")
process_group.allreduce(torch.rand(10).cuda(rank)).wait()
if rank == 0:
logging.info("Running second allreduce only on rank 0")
work = process_group.allreduce(torch.rand(10).cuda(rank))
logging.info("Waiting for allreduce to complete...")
work.wait()
logging.info("Second allreduce successful: %s", work.is_success())
else:
logging.info("Aborting all other ranks.")
os.abort()