-
Notifications
You must be signed in to change notification settings - Fork 19
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Suggestion: Allow guessing if a square only ever can be revealed by guessing in the future #7
Comments
Maybe if I ever get to using a different solver that would make this easier... |
By intuition (which may be wrong), I'd say except for trivial situations you'd need to enumerate all possible solutions for the rest of the board to be sure that a square is actually uncertain.
Agreed. From a player's perspective this could get really confusing. But from the (mostly theoretical) perspective of "I am only allowed to click on uncertain squares if I have to", such a feature would be pretty cool. |
Here are my heuristics i'd use for determining where you can guess.
This way, we use the same strategy as we would with normal minesweeper, but we won't get screwed. |
i guess this is abandoned? maybe i should fork and try to fix it? |
Hi. By all means, go ahead and fork - good luck trying this out! (It sounds like your idea for Kaboom rules is quite different to what I had in mind, so I probably won't be interested in merging, but I'll be happy to link to your version if you end up publishing it). |
I just really don't like being forced to move elsewhere when i know there
is no way to resolve the area, so that should be allowed. But you also
shouldn't be able to abuse your free guesses to reveal squares that are
more likely to be a mine than not. So i think it's very well within the
spirit of the game as you described it
these rules will let you play it like real minesweeper.
|
yeah, my heuristic would detect this easily, and permit the guess. the four yellow squares at the bottom right are all adjacent to a revealed square, have no safe squares by them, and are on boundary. This means that guessing is required to solve the area. I don't believe there is any corner case to be found, since every example of "number of mine left resolves area" I can think of has at least one off boundary square, which is potentially resolvable when the number of mines in the area is known. |
I don't think so. If I encounter a counterexample, I'll get back here. |
Think of the following scenario:
I set up a board for which there are two uncertain squares left, and one certainly safe square. In this scenario, continuing with the safe square and finishing the rest of the board before continuing in the bottom left can never change the fact that I need to guess which of the two bottom squares is a mine.
As it is now, I need to wait until there are no certainly safe squares left in completely independent parts of the board, before continuing with a part of the board that's actually already solved.
Without spending a lot of thought on how to compute / implement this, and on the consequences of such a feature, I'd suggest to allow guesses on uncertain fields that are independent of still unrevealed certainly safe squares.
The text was updated successfully, but these errors were encountered: