forked from sabm0hmayahai/Electro-Maps
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflask.py
171 lines (123 loc) · 4.4 KB
/
flask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import flask
import pandas as pd
import tensorflow as tf
from keras.models import load_model
import requests
import datetime
from sklearn import preprocessing
import numpy as np
from sklearn.preprocessing import StandardScaler
import json
import pickle
from sklearn.pipeline import Pipeline
# instantiate flask
app = flask.Flask(__name__)
# load the model, and pass in the custom metric function
global graph
graph = tf.get_default_graph()
model = load_model('devhacks_weights_83p81.h5')
holidays_tt = ["2020-01-01",
"2020-01-15",
"2020-01-26",
"2020-02-21",
"2020-03-10",
"2020-03-25",
"2020-04-02",
"2020-04-06",
"2020-04-10",
"2020-05-01",
"2020-05-07",
"2020-05-25",
"2020-06-23",
"2020-08-01",
"2020-08-03",
"2020-08-12",
"2020-08-15",
"2020-08-22",
"2020-08-30",
"2020-08-31",
"2020-10-02",
"2020-10-25",
"2020-10-30",
"2020-11-14",
"2020-11-30",
"2020-12-25"
]
url = "https://api.openweathermap.org/data/2.5/weather?q=Bengaluru,in&APPID=b1a275b64af38a8f9823800a58345b93"
# homepage
@app.route("/", methods=["GET","POST"])
def homepage():
return flask.render_template("index.html")
#trained keras model
model = load_model('final_model.h5')
@app.route("/predict", methods=["POST"])
def predict():
dat = flask.request.form['date']
time = flask.request.form['time']
if str(dat) in holidays_tt:
holiday=1
else:
holiday=0
response = requests.get(url).json()
temp = float(response["main"]["temp"]) - 273.15
temp_min = float(response["main"]["temp_min"]) - 283.15
temp_max = float(response["main"]["temp_max"]) - 273.15
pressure = response["main"]["pressure"]
humidity = response["main"]["humidity"]
#week
date_time_obj = datetime.datetime.strptime(dat, '%Y-%m-%d')
week = datetime.date(date_time_obj.year,date_time_obj.month,date_time_obj.day).isocalendar()[1]
#hour
hour = int(time[:-3])
#population
dic = {
"HSR Division" : 105265,
"Koramangala Division" : 63987,
"Indiranagar" : 58830,
"Shivajinagar" : 57437,
"Hebbal" : 54301,
"Whitefield" : 84428,
"Malleshwaram" : 57107,
"Rajaji Nagara Division" : 55250,
"Jayanagar" : 56658,
"Jalahalli" : 63391,
"Kengeri Division" : 68087,
"R R NAGAR" : 82848,
"Vidhanasoudha" : 69057,
"Peenya Division" : 96549
}
lb = preprocessing.LabelBinarizer()
lb.fit(['HSR Division', 'Koramangala Division', 'Indiranagar',
'Shivajinagar', 'Hebbal', 'Whitefield', 'Malleshwaram',
'Rajaji Nagara Division', 'Jayanagar', 'Jalahalli',
'Kengeri Division', 'R R NAGAR', 'Vidhanasoudha',
'Peenya Division'])
lt = list(dic.keys())
df = pd.DataFrame(lt)
divs = lb.transform(df)
divs = pd.DataFrame(divs)
week = [week]*14
temp_max = [temp_max]*14
temp_min = [temp_min]*14
holiday = [holiday]*14
divs = pd.concat([pd.DataFrame(temp_max), divs], axis=1)
divs = pd.concat([pd.DataFrame(temp_min), divs], axis=1)
divs = pd.concat([pd.DataFrame(week), divs], axis=1)
divs = pd.concat([divs, pd.DataFrame(holiday)], axis=1)
pop = [dic[x] for x in lt]
#population
divs = pd.concat([divs, pd.DataFrame(pop)], axis=1)
hour = [hour]*14
divs = pd.concat([ divs, pd.DataFrame(hour)], axis=1)
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
divs = sc_X.fit_transform(divs)
with graph.as_default():
prd = model.predict(divs)
newprd = prd.tolist()
#return to webpage
return flask.render_template("index.html", data = newprd)
# start the flask app, allow remote connections
if __name__ == "__main__":
app.run(host='0.0.0.0', port=8000)