-
Notifications
You must be signed in to change notification settings - Fork 0
/
Assignment_PA2.py
607 lines (522 loc) · 21.1 KB
/
Assignment_PA2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
#!/usr/bin/env python
# coding: utf-8
# In[26]:
import matplotlib.pyplot as plt
import jellyfish
import itertools
import collections
import seaborn as sns
#Hexadecimal to Binary Conversion
def hex2bin(s):
mp = {'0' : "0000",
'1' : "0001",
'2' : "0010",
'3' : "0011",
'4' : "0100",
'5' : "0101",
'6' : "0110",
'7' : "0111",
'8' : "1000",
'9' : "1001",
'A' : "1010",
'B' : "1011",
'C' : "1100",
'D' : "1101",
'E' : "1110",
'F' : "1111" }
bin = ""
for i in range(len(s)):
bin = bin + mp[s[i]]
return bin
# Binary to hexadecimal conversion
def bin2hex(s):
mp = {"0000" : '0',
"0001" : '1',
"0010" : '2',
"0011" : '3',
"0100" : '4',
"0101" : '5',
"0110" : '6',
"0111" : '7',
"1000" : '8',
"1001" : '9',
"1010" : 'A',
"1011" : 'B',
"1100" : 'C',
"1101" : 'D',
"1110" : 'E',
"1111" : 'F' }
hex = ""
for i in range(0,len(s),4):
ch = ""
ch = ch + s[i]
ch = ch + s[i + 1]
ch = ch + s[i + 2]
ch = ch + s[i + 3]
hex = hex + mp[ch]
return hex
# Binary to decimal conversion
def bin2dec(binary):
binary1 = binary
decimal, i, n = 0, 0, 0
while(binary != 0):
dec = binary % 10
decimal = decimal + dec * pow(2, i)
binary = binary//10
i += 1
return decimal
# Decimal to binary conversion
def dec2bin(num):
res = bin(num).replace("0b", "")
if(len(res)%4 != 0):
div = len(res) / 4
div = int(div)
counter =(4 * (div + 1)) - len(res)
for i in range(0, counter):
res = '0' + res
return res
# Permute function to rearrange the bits
def permute(k, arr, n):
permutation = ""
for i in range(0, n):
permutation = permutation + k[arr[i] - 1]
return permutation
# shifting the bits towards left by nth shifts
def shift_left(k, nth_shifts):
s = ""
for i in range(nth_shifts):
for j in range(1,len(k)):
s = s + k[j]
s = s + k[0]
k = s
s = ""
return k
# calculating xow of two strings of binary number a and b
def xor(a, b):
ans = ""
for i in range(len(a)):
if a[i] == b[i]:
ans = ans + "0"
else:
ans = ans + "1"
return ans
# Table of Position of 64 bits at initial level: Initial Permutation Table
initial_perm = [58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7]
# Expansion D-box Table
exp_d = [32, 1 , 2 , 3 , 4 , 5 , 4 , 5,
6 , 7 , 8 , 9 , 8 , 9 , 10, 11,
12, 13, 12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21, 20, 21,
22, 23, 24, 25, 24, 25, 26, 27,
28, 29, 28, 29, 30, 31, 32, 1 ]
# Straight Permutation Table
per = [ 16, 7, 20, 21,
29, 12, 28, 17,
1, 15, 23, 26,
5, 18, 31, 10,
2, 8, 24, 14,
32, 27, 3, 9,
19, 13, 30, 6,
22, 11, 4, 25 ]
# S-box Table
sbox = [[[14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7],
[ 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8],
[ 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0],
[15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 ]],
[[15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10],
[3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5],
[0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15],
[13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 ]],
[ [10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8],
[13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1],
[13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7],
[1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 ]],
[ [7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15],
[13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9],
[10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4],
[3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14] ],
[ [2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9],
[14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6],
[4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14],
[11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 ]],
[ [12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11],
[10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8],
[9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6],
[4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13] ],
[ [4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1],
[13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6],
[1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2],
[6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12] ],
[ [13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7],
[1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2],
[7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8],
[2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11] ] ]
# Final Permutation Table
final_perm = [ 40, 8, 48, 16, 56, 24, 64, 32,
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25 ]
def encrypt(pt, rkb, rk):
# Initial Permutation
plain=[]
pt = permute(pt, initial_perm, 64)
#print("After initial permutation", pt)
old,cur=pt,""
# Splitting
left = pt[0:32]
right = pt[32:64]
for i in range(0, 16):
# Expansion D-box: Expanding the 32 bits data into 48 bits
right_expanded = permute(right, exp_d, 48)
# XOR RoundKey[i] and right_expanded
xor_x = xor(right_expanded, rkb[i])
# S-boxex: substituting the value from s-box table by calculating row and column
sbox_str = ""
for j in range(0, 8):
row = bin2dec(int(xor_x[j * 6] + xor_x[j * 6 + 5]))
col = bin2dec(int(xor_x[j * 6 + 1] + xor_x[j * 6 + 2] + xor_x[j * 6 + 3] + xor_x[j * 6 + 4]))
val = sbox[j][row][col]
sbox_str = sbox_str + dec2bin(val)
# Straight D-box: After substituting rearranging the bits
sbox_str = permute(sbox_str, per, 32)
# XOR left and sbox_str
result = xor(left, sbox_str)
left = result
# Swapper
if(i != 15):
left, right = right, left
x=str(left)
y=str(right)
x+=y
cur=x
# print("Round ", i + 1, " ", left, " ", right)
plain.append(cur)
ct=0
le=0
while le<64:
if cur[le]!=old[le]:
ct+=1
le+=1
ct=0
# Combination
combine = left + right
# Final permutation: final rearranging of bits to get cipher text
cipher_text = permute(combine, final_perm, 64)
return cipher_text,plain
#For 5 different plain texts their 5 different perturbed texts with hamming distance of 1 between them
pl_text1="1100000010110111101010001101000001011111001110101000001010011100"
ch_text1="1100001010110111101010001101000001011111001110101000001010011100"
pl_text2="0000000010110111101010001001000001011111001110101000001010011100"
ch_text2="0000000010110101101010001001000001011111001110101000001010011100"
pl_text3="1100000010110111101010001101000001010001001110101010001011111100"
ch_text3="1100001010110111101010001101000001010001001110101010001011111100"
pl_text4="1100000010110111101010001101000001000000001110101000001010010011"
ch_text4="1100000010110111101010001101000001001000001110101000001010010011"
pl_text5="1111000010110111101010001101001001011111001110101000001010011111"
ch_text5="0111000010110111101010001101001001011111001110101000001010011111"
#Plain texts with different hamming distances between them(i.e hamming distance =1,2,3,4,5)
pt = "1100000010110111101010001101000001011111001110101000001010011100"
pt2="1100100010110111101010001101000001011111001110101000001010011100"
pt3="1100001000110111101010001101000001011111001110101000001010011100"
pt4="1100000010100111101010001101000011011111001110101000011010011100"
pt5="1101000010110111101011001101010001011111001110101001001010011100"
pt6="1100000010110111101011111101000101011101001110101000001010011100"
#5 different secret keys
key = "1010101010111011000010010001100000100111001101101100110011011101"
key2="1010101010111011000010010001101000100111001101101100110011011101"
key3="1010101010111010100010010001100000100111001101101100110011011101"
key4="1010101010111011000010010001101100100110001101101100110011011101"
key5="1010101010111011001110010001100000100001001101101100110011011101"
# --parity bit drop table
keyp = [57, 49, 41, 33, 25, 17, 9,
1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27,
19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15,
7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29,
21, 13, 5, 28, 20, 12, 4 ]
# getting 56 bit key from 64 bit using the parity bits
key = permute(key, keyp, 56)
key2=permute(key2,keyp,56)
key3=permute(key3,keyp,56)
key4=permute(key4,keyp,56)
key5=permute(key5,keyp,56)
# Number of bit shifts
shift_table = [1, 1, 2, 2,
2, 2, 2, 2,
1, 2, 2, 2,
2, 2, 2, 1 ]
# Key- Compression Table : Compression of key from 56 bits to 48 bits
key_comp = [14, 17, 11, 24, 1, 5,
3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8,
16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32 ]
# Splitting
left = key[0:28] # rkb for RoundKeys in binary
right = key[28:56] # rk for RoundKeys in hexadecimal
rkb = []
rk = []
for i in range(0, 16):
# Shifting the bits by nth shifts by checking from shift table
left = shift_left(left, shift_table[i])
right = shift_left(right, shift_table[i])
# Combination of left and right string
combine_str = left + right
# Compression of key from 56 to 48 bits
round_key = permute(combine_str, key_comp, 48)
rkb.append(round_key)
rk.append(round_key)
p1,p2,p3,p4,p5=[],[],[],[],[]
c1,c2,c3,c4,c5=[],[],[],[],[]
ct1,p1 = encrypt(pl_text1, rkb, rk)
ct2,p2 = encrypt(pl_text2, rkb, rk)
ct3,p3 = encrypt(pl_text3, rkb, rk)
ct4,p4 = encrypt(pl_text4, rkb, rk)
ct5,p5 = encrypt(pl_text5, rkb, rk)
ct6,c1 = encrypt(ch_text1, rkb, rk)
ct7,c2 = encrypt(ch_text2, rkb, rk)
ct8,c3 = encrypt(ch_text3, rkb, rk)
ct9,c4 = encrypt(ch_text4, rkb, rk)
ct10,c5 = encrypt(ch_text5, rkb, rk)
H_D1,H_D2,H_D3,H_D4,H_D5=[],[],[],[],[]
#Storing the hamming distance of 16 rounds of cipher texts in 5 lists. Each list contains the hamming distance between two cipher texts for each of the 16 rounds
for i in range (0,16):
H_D1.append(jellyfish.damerau_levenshtein_distance(p1[i], c1[i]))
H_D2.append(jellyfish.damerau_levenshtein_distance(p2[i], c2[i]))
H_D3.append(jellyfish.damerau_levenshtein_distance(p3[i], c3[i]))
H_D4.append(jellyfish.damerau_levenshtein_distance(p4[i], c4[i]))
H_D5.append(jellyfish.damerau_levenshtein_distance(p5[i], c5[i]))
print("1)Taking Five plaintexts and for each plain text there is a pertubed text with a hamming distance of 1 between them:")
print("")
print("For plain text:",bin2hex(pl_text1)," and perturbed text :",bin2hex(ch_text1))
print("Hamming Distance between cipher text for round 1 to 16: ",H_D1)
print("")
print("For plain text:",bin2hex(pl_text2)," and perturbed text :",bin2hex(ch_text2))
print("Hamming Distance between cipher text for round 1 to 16: ",H_D2)
print("")
print("For plain text:",bin2hex(pl_text3)," and perturbed text :",bin2hex(ch_text3))
print("Hamming Distance between cipher text for round 1 to 16: ",H_D3)
print("")
print("For plain text:",bin2hex(pl_text4)," and perturbed text :",bin2hex(ch_text4))
print("Hamming Distance between cipher text for round 1 to 16: ",H_D4)
print("")
print("For plain text:",bin2hex(pl_text5)," and perturbed text :",bin2hex(ch_text5))
print("Hamming Distance between cipher text for round 1 to 16: ",H_D5)
round1, round2, round3, round4,round5,round6,round7,round8,round9,round10,round11,round12,round13,round14,round15,round16 = ([], ) * 16
mul_list_dict3 = collections.defaultdict(list)
#Seperating the hamming distance of cipher texts for different rounds with each round having 5 hamming distances corresponding to 5 cipher texts
for i in range(0,16):
mul_list_dict3['round'+str((i+1))].append(H_D1[i])
mul_list_dict3['round'+str((i+1))].append(H_D2[i])
mul_list_dict3['round'+str((i+1))].append(H_D3[i])
mul_list_dict3['round'+str((i+1))].append(H_D4[i])
mul_list_dict3['round'+str((i+1))].append(H_D5[i])
data=[mul_list_dict3['round1'],mul_list_dict3['round2'],mul_list_dict3['round3'],mul_list_dict3['round4'],mul_list_dict3['round5'],mul_list_dict3['round6'],mul_list_dict3['round7'],mul_list_dict3['round8'],mul_list_dict3['round9'],mul_list_dict3['round10'],mul_list_dict3['round11'],mul_list_dict3['round12'],mul_list_dict3['round13'],mul_list_dict3['round14'],mul_list_dict3['round15'],mul_list_dict3['round16']]
fig = plt.figure(figsize =(10, 7))
# Creating axes instance
ax = fig.add_axes([1, 0.5, 1, 0.5])
ax.set_title("Using Five different plaintexts")
ax.set_xlabel("Rounds")
ax.set_ylabel("Hamming Distance of cipher texts")
# Creating plot
bp = ax.boxplot(data)
# show plot
plt.show()
#Encrypting of plaintext
plaint_text1=[]
plaint_text2=[]
plaint_text3=[]
plaint_text4=[]
plaint_text5=[]
plaint_text6=[]
print("2)Taking 5 different hamming distances")
print("")
cipher_text,plaint_text1 = encrypt(pt, rkb, rk)
#print("Cipher Text : ",cipher_text)
cipher_text2,plaint_text2 = encrypt(pt2, rkb, rk)
#print("Cipher Text : ",cipher_text2)
cipher_text3,plaint_text3 = encrypt(pt3, rkb, rk)
#print("Cipher Text : ",cipher_text3)
cipher_text4,plaint_text4 = encrypt(pt4, rkb, rk)
#print("Cipher Text : ",cipher_text4)
cipher_text5,plaint_text5 = encrypt(pt5, rkb, rk)
cipher_text6,plaint_text6 = encrypt(pt6, rkb, rk)
#print("Cipher Text : ",cipher_text5)
dist1=[]
dist2=[]
dist3=[]
dist4=[]
dist5=[]
#calculating the hamming distance of cipher texts for each round
for i in range (0,16):
# print("p=:"+str(i+1))
dist1.append(jellyfish.damerau_levenshtein_distance(plaint_text1[i], plaint_text2[i]))
#print("dis="+str(dist))
dist2.append(jellyfish.damerau_levenshtein_distance(plaint_text1[i], plaint_text3[i]))
dist3.append(jellyfish.damerau_levenshtein_distance(plaint_text1[i], plaint_text4[i]))
dist4.append(jellyfish.damerau_levenshtein_distance(plaint_text1[i], plaint_text5[i]))
dist5.append(jellyfish.damerau_levenshtein_distance(plaint_text1[i], plaint_text6[i]))
round1, round2, round3, round4,round5,round6,round7,round8,round9,round10,round11,round12,round13,round14,round15,round16 = ([], ) * 16
mul_list_dict = collections.defaultdict(list)
for i in range(0,16):
mul_list_dict['round'+str((i+1))].append(dist1[i])
mul_list_dict['round'+str((i+1))].append(dist2[i])
mul_list_dict['round'+str((i+1))].append(dist3[i])
mul_list_dict['round'+str((i+1))].append(dist4[i])
mul_list_dict['round'+str((i+1))].append(dist5[i])
print("Plain text: "+bin2hex(pt)," Perturbed text :",bin2hex(pt2)," Hamming Distance : 1")
print("Hamming Distance between cipher text for round 1 to 16: ",dist1)
print("")
print("Plain text: "+bin2hex(pt)," Perturbed text :",bin2hex(pt3)," Hamming Distance : 2")
print("Hamming Distance between cipher text for round 1 to 16: ",dist2)
print("")
print("Plain text: "+bin2hex(pt)," Perturbed text :",bin2hex(pt4)," Hamming Distance : 3")
print("Hamming Distance between cipher text for round 1 to 16: ",dist3)
print("")
print("Plain text: "+bin2hex(pt)," Perturbed text :",bin2hex(pt5)," Hamming Distance : 4")
print("Hamming Distance between cipher text for round 1 to 16: ",dist4)
print("")
print("Plain text: "+bin2hex(pt)," Perturbed text :",bin2hex(pt6)," Hamming Distance : 5")
print("Hamming Distance between cipher text for round 1 to 16: ",dist5)
print("")
left2 = key2[0:28] # rkb for RoundKeys in binary
right2 = key2[28:56] # rk for RoundKeys in hexadecimal
rkb2 = []
rk2 = []
for i in range(0, 16):
# Shifting the bits by nth shifts by checking from shift table
left2 = shift_left(left2, shift_table[i])
right2 = shift_left(right2, shift_table[i])
# Combination of left and right string
combine_str = left2 + right2
# Compression of key from 56 to 48 bits
round_key = permute(combine_str, key_comp, 48)
rkb2.append(round_key)
rk2.append(round_key)
cipher_text6,plaint_text6 = encrypt(pt, rkb2, rk2)
left3 = key3[0:28] # rkb for RoundKeys in binary
right3 = key3[28:56] # rk for RoundKeys in hexadecimal
rkb3 = []
rk3 = []
for i in range(0, 16):
# Shifting the bits by nth shifts by checking from shift table
left3 = shift_left(left3, shift_table[i])
right3 = shift_left(right3, shift_table[i])
# Combination of left and right string
combine_str = left3 + right3
# Compression of key from 56 to 48 bits
round_key = permute(combine_str, key_comp, 48)
rkb3.append(round_key)
rk3.append(round_key)
cipher_text7,plaint_text7 = encrypt(pt, rkb3, rk3)
left4= key4[0:28] # rkb for RoundKeys in binary
right4 = key4[28:56] # rk for RoundKeys in hexadecimal
rkb4 = []
rk4 = []
for i in range(0, 16):
# Shifting the bits by nth shifts by checking from shift table
left4 = shift_left(left4, shift_table[i])
right4 = shift_left(right4, shift_table[i])
# Combination of left and right string
combine_str = left4 + right4
# Compression of key from 56 to 48 bits
round_key = permute(combine_str, key_comp, 48)
rkb4.append(round_key)
rk4.append(round_key)
cipher_text8,plaint_text8 = encrypt(pt, rkb4, rk4)
left5 = key5[0:28] # rkb for RoundKeys in binary
right5 = key5[28:56] # rk for RoundKeys in hexadecimal
rkb5 = []
rk5= []
for i in range(0, 16):
# Shifting the bits by nth shifts by checking from shift table
left5= shift_left(left5, shift_table[i])
right5 = shift_left(right5, shift_table[i])
# Combination of left and right string
combine_str = left5 + right5
# Compression of key from 56 to 48 bits
round_key = permute(combine_str, key_comp, 48)
rkb5.append(round_key)
rk5.append(round_key)
cipher_text9,plaint_text9 = encrypt(pt, rkb5, rk5)
dist5=[]
dist6=[]
dist7=[]
dist8=[]
#calculating the hamming distance of cipher texts for each round
for i in range (0,16):
dist5.append(jellyfish.damerau_levenshtein_distance(plaint_text1[i], plaint_text6[i]))
dist6.append(jellyfish.damerau_levenshtein_distance(plaint_text1[i], plaint_text7[i]))
dist7.append(jellyfish.damerau_levenshtein_distance(plaint_text1[i], plaint_text8[i]))
dist8.append(jellyfish.damerau_levenshtein_distance(plaint_text1[i], plaint_text9[i]))
data=[mul_list_dict['round1'],mul_list_dict['round2'],mul_list_dict['round3'],mul_list_dict['round4'],mul_list_dict['round5'],mul_list_dict['round6'],mul_list_dict['round7'],mul_list_dict['round8'],mul_list_dict['round9'],mul_list_dict['round10'],mul_list_dict['round11'],mul_list_dict['round12'],mul_list_dict['round13'],mul_list_dict['round14'],mul_list_dict['round15'],mul_list_dict['round16']]
fig = plt.figure(figsize =(10, 7))
# Creating axes instance
ax = fig.add_axes([1, 0.5, 1, 0.5])
ax.set_xlabel("Rounds")
ax.set_ylabel("Hamming Distance of cipher texts")
ax.set_title("Using Five Different Hamming distances")
# Creating plot
bp = ax.boxplot(data)
# show plot
plt.show()
print("3)Taking 5 different secret keys")
print("")
print("Fixed Plain text:",bin2hex(pt),"\n\nKey1: ",bin2hex(key))
print("Cipher Text:",bin2hex(cipher_text6))
print("")
print("Key2: ",bin2hex(key))
print("Cipher Text:",bin2hex(cipher_text6))
print("")
print("Hamming distance of cipher text for round 1 to 16 corresponding key1 and key2: ",dist5)
print("")
print("Key3: ",bin2hex(key))
print("Cipher Text:",bin2hex(cipher_text7))
print("")
print("Hamming distance of cipher text for round 1 to 16 corresponding key1 and key3: ",dist6)
print("")
print("Key4: ",bin2hex(key))
print("Cipher Text:",bin2hex(cipher_text8))
print("")
print("Hamming distance of cipher text for round 1 to 16 corresponding key1 and key4: ",dist7)
print("")
print("Key5: ",bin2hex(key))
print("Cipher Text:",bin2hex(cipher_text9))
print("")
print("Hamming distance of cipher text for round 1 to 16 corresponding key1 and key5: ",dist8)
print("")
round1, round2, round3, round4,round5,round6,round7,round8,round9,round10,round11,round12,round13,round14,round15,round16 = ([], ) * 16
mul_list_dict2 = collections.defaultdict(list)
for i in range(0,16):
mul_list_dict2['round'+str((i+1))].append(dist5[i])
mul_list_dict2['round'+str((i+1))].append(dist6[i])
mul_list_dict2['round'+str((i+1))].append(dist7[i])
mul_list_dict2['round'+str((i+1))].append(dist8[i])
data=[mul_list_dict2['round1'],mul_list_dict2['round2'],mul_list_dict2['round3'],mul_list_dict2['round4'],mul_list_dict2['round5'],mul_list_dict2['round6'],mul_list_dict2['round7'],mul_list_dict2['round8'],mul_list_dict2['round9'],mul_list_dict2['round10'],mul_list_dict2['round11'],mul_list_dict2['round12'],mul_list_dict2['round13'],mul_list_dict2['round14'],mul_list_dict2['round15'],mul_list_dict2['round16']]
fig = plt.figure(figsize =(10, 7))
# Creating axes instance
ax = fig.add_axes([1, 0.5, 1, 0.5])
ax.set_title("Using 5 different Secret Keys")
ax.set_xlabel("Rounds")
ax.set_ylabel("Hamming Distance of cipher texts")
# Creating plot
bp = ax.boxplot(data)
# show plot
plt.show()
# In[ ]: