You can check if your system meets the requirements by running
firecracker/tools/devtool checkenv
.
An opinionated way to run Firecracker is to launch an
EC2 i3.metal
instance with Ubuntu 18.04.
Nested virtualization is not supported on non-metal EC2 instances. This is why
.metal
instances are used.
Firecracker supports x86_64 and aarch64 Linux, see specific supported kernels.
Firecracker requires the KVM Linux kernel module.
The presence of the KVM module can be checked with:
lsmod | grep kvm
An example output where it is enabled:
kvm_intel 348160 0
kvm 970752 1 kvm_intel
irqbypass 16384 1 kvm
Some Linux distributions use the kvm
group to manage access to /dev/kvm
,
while others rely on access control lists. If you have the ACL package for your
distro installed, you can grant Read+Write access with:
sudo setfacl -m u:${USER}:rw /dev/kvm
Otherwise, if access is managed via the kvm
group:
[ $(stat -c "%G" /dev/kvm) = kvm ] && sudo usermod -aG kvm ${USER} \
&& echo "Access granted."
If none of the above works, you will need to either install the file
system ACL package for your distro and use the setfacl
command as above,
or run Firecracker as root
(via sudo
).
You can check if you have access to /dev/kvm
with:
[ -r /dev/kvm ] && [ -w /dev/kvm ] && echo "OK" || echo "FAIL"
In production, Firecracker is designed to be run inside
an execution jail, set up by the jailer
binary. This is how
our integration test suite does it. This
guide will not use the jailer
.
ARCH="$(uname -m)"
# Download a linux kernel binary
wget https://s3.amazonaws.com/spec.ccfc.min/img/quickstart_guide/${ARCH}/kernels/vmlinux.bin
# Download a rootfs
wget https://s3.amazonaws.com/spec.ccfc.min/ci-artifacts/disks/${ARCH}/ubuntu-18.04.ext4
# Download the ssh key for the rootfs
wget https://s3.amazonaws.com/spec.ccfc.min/ci-artifacts/disks/${ARCH}/ubuntu-18.04.id_rsa
# Set user read permission on the ssh key
chmod 400 ./ubuntu-18.04.id_rsa
# Clone the firecracker repository
git clone https://github.com/firecracker-microvm/firecracker
# Start docker
sudo systemctl start docker
# Build firecracker
#
# It is possible to build for gnu, by passing the arguments '-l gnu'.
#
# This will produce the firecracker and jailer binaries under
# `./firecracker/build/cargo_target/${toolchain}/debug`.
#
sudo ./firecracker/tools/devtool build
API_SOCKET="./firecracker.socket"
# Remove API unix socket
rm -f $API_SOCKET
# Run firecracker
./firecracker/build/cargo_target/${ARCH}-unknown-linux-musl/debug/firecracker \
--api-sock "${API_SOCKET}"
In a new terminal (do not close the 1st one):
TAP_DEV="tap0"
TAP_IP="172.16.0.1"
MASK_SHORT="/30"
# Setup network interface
sudo ip link del "$TAP_DEV" 2> /dev/null || true
sudo ip tuntap add dev "$TAP_DEV" mode tap
sudo ip addr add "${TAP_IP}${MASK_SHORT}" dev "$TAP_DEV"
sudo ip link set dev "$TAP_DEV" up
# Enable ip forwarding
sudo sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward"
# Set up microVM internet access
sudo iptables -t nat -D POSTROUTING -o eth0 -j MASQUERADE || true
sudo iptables -D FORWARD -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT \
|| true
sudo iptables -D FORWARD -i tap0 -o eth0 -j ACCEPT || true
sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
sudo iptables -I FORWARD 1 -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT
sudo iptables -I FORWARD 1 -i tap0 -o eth0 -j ACCEPT
API_SOCKET="./firecracker.socket"
LOGFILE="./firecracker.log"
# Create log file
touch $LOGFILE
# Set log file
curl -X PUT --unix-socket "${API_SOCKET}" \
--data "{
\"log_path\": \"${LOGFILE}\",
\"level\": \"Debug\",
\"show_level\": true,
\"show_log_origin\": true
}" \
"http://localhost/logger"
KERNEL="./vmlinux.bin"
KERNEL_BOOT_ARGS="console=ttyS0 reboot=k panic=1 pci=off"
ARCH=$(uname -m)
if [ ${ARCH} = "aarch64" ]; then
KERNEL_BOOT_ARGS="keep_bootcon ${KERNEL_BOOT_ARGS}"
fi
# Set boot source
curl -X PUT --unix-socket "${API_SOCKET}" \
--data "{
\"kernel_image_path\": \"${KERNEL}\",
\"boot_args\": \"${KERNEL_BOOT_ARGS}\"
}" \
"http://localhost/boot-source"
ROOTFS="./ubuntu-18.04.ext4"
# Set rootfs
curl -X PUT --unix-socket "${API_SOCKET}" \
--data "{
\"drive_id\": \"rootfs\",
\"path_on_host\": \"${ROOTFS}\",
\"is_root_device\": true,
\"is_read_only\": false
}" \
"http://localhost/drives/rootfs"
# The IP address of a guest is derived from its MAC address with
# `fcnet-setup.sh`, this has been pre-configured in the guest rootfs. It is
# important that `TAP_IP` and `FC_MAC` match this.
FC_MAC="06:00:AC:10:00:02"
# Set network interface
curl -X PUT --unix-socket "${API_SOCKET}" \
--data "{
\"iface_id\": \"net1\",
\"guest_mac\": \"$FC_MAC\",
\"host_dev_name\": \"$TAP_DEV\"
}" \
"http://localhost/network-interfaces/net1"
# API requests are handled asynchronously, it is important the configuration is
# set, before `InstanceStart`.
sleep 0.015s
# Start microVM
curl -X PUT --unix-socket "${API_SOCKET}" \
--data "{
\"action_type\": \"InstanceStart\"
}" \
"http://localhost/actions"
# API requests are handled asynchronously, it is important the microVM has been
# started before we attempt to SSH into it.
sleep 0.015s
# SSH into the microVM
sudo ssh -i ./ubuntu-18.04.id_rsa 172.16.0.2
# Use `root` for both the login and password.
# Run `reboot` to exit.
Issuing a reboot
command inside the guest will gracefully shutdown Firecracker.
This is due to the fact that Firecracker doesn't implement guest power management.
You can boot a guest without using the API socket by passing the parameter
--config-file
to the Firecracker process.
E.g.:
./firecracker --api-sock /tmp/firecracker.socket --config-file <path_to_the_configuration_file>
path_to_the_configuration_file
is the path to a JSON file with the
configuration for all of the microVM's resources. The JSON must contain the
configuration for the guest kernel and rootfs, all of the other resources are
optional. This configuration method will also start the microVM, as such you
need to specify all desired pre-boot configurable resources in the JSON. The
names of the resources can be seen in
firecracker.yaml
and the
names of their fields are the same that are used in the API requests.
An example of configuration file is provided:
tests/framework/vm_config.json
.
After the microVM is started you can still use the socket to send API requests for post-boot operations.
SSH can be used to work with libraries from private git repos by passing
the --ssh-keys
flag to specify the paths to your public and private SSH keys
on the host. Both are required for git authentication when fetching the
repositories.
tools/devtool build --ssh-keys ~/.ssh/id_rsa.pub ~/.ssh/id_rsa
Only a single set of credentials is supported. devtool
cannot fetch multiple
private repos which rely on different credentials.
tools/devtool build
builds in debug
to build release binaries pass
--release
e.g. tools/devtool build --release
Documentation on devtool
can be seen with tools/devtool --help
.
Integration tests can be run with tools/devtool test
.
The test suite is designed to ensure our SLA parameters
as measured on EC2 .metal instances, as such performance tests may fail when not
run on these machines. Specifically, don't be alarmed if you see
tests/integration_tests/performance/test_process_startup_time.py
failing when
not run on an EC2 .metal instance. You can skip performance tests with:
./tools/devtool test -- --ignore integration_tests/performance
Points to check to confirm the API socket is running and accessible:
- Check that the user running the Firecracker process and the user using
curl
have equivalent privileges. For example, if you run Firecracker with sudo that you runcurl
with sudo as well. - SELinux can regulate
access to sockets on RHEL based distributions. How user's permissions are
configured is environmentally specific, but for the purposes of
troubleshooting you can check if it is enabled in
/etc/selinux/config
. - With the Firecracker process running using
--api-sock /tmp/firecracker.socket
, confirm that the socket is open:ss -a | grep '/tmp/firecracker.socket'
- If you have socat available, try
socat - UNIX-CONNECT:/tmp/firecracker.socket
This will throw an explicit error if the socket is inaccessible, or it will pause and wait for input to continue.