-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
147 lines (107 loc) · 4.11 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#######################################################
#
# Code from Ilya Sutskever at
# http://www.cs.utoronto.ca/~ilya/code/2008/RTRBM.tar
#
#######################################################
from pylab import *
import tensorflow as tf
#FLAGS = tf.app.flags.FLAGS
def norm(y): return sqrt((y**2).sum())
def sigmoid(y): return 1./(1.+exp(-y))
SIZE=10
def new_speeds(m1, m2, v1, v2):
new_v2 = (2*m1*v1 + v2*(m2-m1))/(m1+m2)
new_v1 = new_v2 + (v2 - v1)
return new_v1, new_v2
# size of bounding box: SIZE X SIZE.
def model_n(T=64, TY=0, n=2, r=None, m=None):
if r is None: r=array([4.0]*n)
if m is None: m=array([1]*n)
# r is to be rather small.
X=zeros((T, n, 2), dtype='float')
V = zeros((T, n, 2), dtype='float')
if TY==0:
v = randn(n,2)
v = (v / norm(v)*.5)*1.0
else:
v=0*randn(n,2)
good_config=False
while not good_config:
x = 2+rand(n,2)*8
good_config=True
for i in range(n):
for z in range(2):
if x[i][z]-r[i]<0: good_config=False
if x[i][z]+r[i]>SIZE: good_config=False
# that's the main part.
for i in range(n):
for j in range(i):
if norm(x[i]-x[j])<r[i]+r[j]:
good_config=False
eps = .5
for t in range(T):
# for how long do we show small simulation
for i in range(n):
X[t,i]=x[i]
V[t,i]=v[i]
for mu in range(int(1/eps)):
for i in range(n):
#x[i]+=eps*v[i]
x[i]+=.5*v[i]
for i in range(n):
for z in range(2):
if x[i][z]-r[i]<0: v[i][z]= abs(v[i][z]) # want positive
if x[i][z]+r[i]>SIZE: v[i][z]=-abs(v[i][z]) # want negative
for i in range(n):
for j in range(i):
if norm(x[i]-x[j])<r[i]+r[j]:
# bouncing off:
w = x[i]-x[j]
w = w / norm(w)
v_i = dot(w.transpose(),v[i])
v_j = dot(w.transpose(),v[j])
new_v_i, new_v_j = new_speeds(m[i], m[j], v_i, v_j)
v[i]+= w*(new_v_i - v_i)
v[j]+= w*(new_v_j - v_j)
return X, V
def ar(x,y,z):
return z/2+arange(x,y,z,dtype='float')
def tomatrix(X,V,res,TY=0,r=None):
T, n= shape(X)[0:2]
if r is None: r=array([4.0]*n)
mat=zeros((T,res,res, 3), dtype='float')
[I, J]=meshgrid(ar(0,1,1./res)*SIZE, ar(0,1,1./res)*SIZE)
for t in range(T):
for i in range(n):
if TY==0:
# ball
ball=exp(-( ((I-X[t,i,0])**2+(J-X[t,i,1])**2)/(r[i]**2) )**4 )
else:
# rotating disk
xx=(I-X[t,i,0])
yy=(J-X[t,i,1])
radius=np.sqrt(xx**2+yy**2)
theta=np.arctan2(xx,yy)
size=r[i]*3
ball=radius<size
omega=0.1
ball=ball*(np.sin(theta+omega*t))**2
mat[t, :, :, 1] += 0.0 * (1.0 ) * ball # Green
mat[t, :, :, 0] += 0.0 * (0.0*V[t,i,0] + 1.0) * ball # Blue
mat[t, :, :, 2] += 1.0 * (0.0*V[t,i,1] + 1.0) * ball # Red
# truncate if Velocity leads to larger than 1, so can map to 0..255 scale normally
mat[t,:,:,0][mat[t,:,:,0]>1]=1
mat[t,:,:,1][mat[t,:,:,1]>1]=1
mat[t,:,:,2][mat[t,:,:,2]>1]=1
return mat
def model_vec(res, n=2, T=64, TY=0, r =None, m =None):
if r is None: r=array([1.2]*n)
x,v = model_n(T,TY,n,r,m);
V = tomatrix(x,v,res,TY,r)
return V
def generate_model_sample(batch_size, seq_length, shape, num_balls, type_balls):
dat = np.zeros((batch_size, seq_length, shape, shape, 3))
for i in xrange(batch_size):
dat[i, :, :, :, :] = model_vec(shape, num_balls, seq_length, type_balls)
return dat