forked from yihshe/ms-convSTAR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
349 lines (294 loc) · 14.4 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import json
import torch.utils.data
import os, glob
import torch
import numpy as np
import h5py
import csv
# NOTE the class Dataset has been adapted for the hdf5 file and label.csv of 2021 data. So it cannot be applied direcly for the ZueriCrop dataset.
class Dataset(torch.utils.data.Dataset):
def __init__(self, path, t=0.9, mode='all', eval_mode=False, fold=None, gt_path='labelsC.csv',
time_downsample_factor=2, num_channel=4, apply_cloud_masking=False, cloud_threshold=0.1,
return_cloud_cover=False, small_train_set_mode=False, data_canton_labels_dir=None, canton_ids_train=None):
self.data = h5py.File(path, "r", libver='latest', swmr=True)
self.samples = self.data["data"].shape[0]
self.max_obs = self.data["data"].shape[1]
self.spatial = self.data["data"].shape[2:-1]
self.t = t
self.augment_rate = 0.66
self.eval_mode = eval_mode
self.fold = fold
self.num_channel = num_channel
self.apply_cloud_masking = apply_cloud_masking
self.cloud_threshold = cloud_threshold
self.return_cloud_cover = return_cloud_cover
self.data_canton_labels = json.load(open(data_canton_labels_dir))
self.canton_ids_train = canton_ids_train
# return the patch indices depending on the mode "train" or "test"
self.valid_list = self.get_valid_list(mode)
self.valid_samples = self.valid_list.shape[0]
gt_path_ = './utils/' + gt_path
if not os.path.exists(gt_path_):
gt_path_ = './' + gt_path
file=open(gt_path_, "r")
tier_1 = []
tier_2 = []
tier_3 = []
tier_4 = []
tier_code = []
reader = csv.reader(file)
for line in reader:
tier_1.append(line[-5]) #'1st_tier'
tier_2.append(line[-4]) #'2nd_tier'
tier_3.append(line[-3]) #'3rd_tier'
tier_4.append(line[-2]) #'4th_tier_ENG'
tier_code.append(line[1]) #'LNF_code'
tier_2[0] = '0_unknown'
tier_3[0] = '0_unknown'
tier_4[0] = '0_unknown'
self.label_list = {}
for i in range(len(tier_2)):
if tier_1[i] == 'Vegetation' and tier_4[i] != '':
# the mapping between numerical indices and LNF_code
self.label_list[i] = int(tier_code[i])
if tier_2[i] == '':
tier_2[i] = '0_unknown'
if tier_3[i] == '':
tier_3[i] = '0_unknown'
if tier_4[i] == '':
tier_4[i] = '0_unknown'
tier_2_elements = list(set(tier_2)) # len of list 6
tier_3_elements = list(set(tier_3)) # 20
tier_4_elements = list(set(tier_4)) # 52
tier_2_elements.sort()
tier_3_elements.sort()
tier_4_elements.sort()
# to map the predicted indices back to names, use tier_4_elements[index]
tier_2_ = []
tier_3_ = []
tier_4_ = []
for i in range(len(tier_2)):
tier_2_.append(tier_2_elements.index(tier_2[i]))
tier_3_.append(tier_3_elements.index(tier_3[i]))
tier_4_.append(tier_4_elements.index(tier_4[i]))
self.label_list_local_1 = []
self.label_list_local_2 = []
self.label_list_glob = []
self.label_list_local_1_name = []
self.label_list_local_2_name = []
self.label_list_glob_name = []
for gt in self.label_list.keys(): # gt are only ids of rows that have tier_1 as 'vegetation' and tier 4 not none
self.label_list_local_1.append(tier_2_[int(gt)])
self.label_list_local_2.append(tier_3_[int(gt)])
self.label_list_glob.append(tier_4_[int(gt)])
self.label_list_local_1_name.append(tier_2[int(gt)])
self.label_list_local_2_name.append(tier_3[int(gt)])
self.label_list_glob_name.append(tier_4[int(gt)])
# +1 represents the 'unknown' class. the actual n_classes contained in self.label_list is only 48, 52 is the number of all original classes
self.n_classes = max(self.label_list_glob) + 1 #52
self.n_classes_local_1 = max(self.label_list_local_1) + 1 #6
self.n_classes_local_2 = max(self.label_list_local_2) + 1 #20
print('Dataset size: ', self.samples)
print('Valid dataset size: ', self.valid_samples)
print('Sequence length: ', self.max_obs)
print('Spatial size: ', self.spatial)
print('Number of classes: ', self.n_classes)
print('Number of classes - local-1: ', self.n_classes_local_1)
print('Number of classes - local-2: ', self.n_classes_local_2)
#for consistency loss---------------------------------------------------------
self.l1_2_g = np.zeros(self.n_classes)
self.l2_2_g = np.zeros(self.n_classes)
self.l1_2_l2 = np.zeros(self.n_classes_local_2)
# label_list_glob (or label_list_l3) is the mapping of label_list (selected elements of column 'GT') to hier4 labels
for i in range(1,self.n_classes):
if i in self.label_list_glob:
self.l1_2_g[i] = self.label_list_local_1[self.label_list_glob.index(i)]
self.l2_2_g[i] = self.label_list_local_2[self.label_list_glob.index(i)]
# if the class is not in label_list, then the corresponding l1 mapping here is 0 (parent class 'unknown')
for i in range(1,self.n_classes_local_2):
if i in self.label_list_local_2:
self.l1_2_l2[i] = self.label_list_local_1[self.label_list_local_2.index(i)]
def __len__(self):
return self.valid_samples
def __getitem__(self, idx):
# TODO save the hdf5 file in batch as .npz file to load the data faster
idx = self.valid_list[idx]
X = self.data["data"][idx]
if self.apply_cloud_masking or self.return_cloud_cover:
CC = self.data["cloud_cover"][idx]
target_ = self.data["gt"][idx,...,0]
if self.eval_mode: #it seems that for evaluation, we do not need to return 'gt_canton'
gt_instance = self.data["gt_instance"][idx,...,0]
X = np.transpose(X, (0, 3, 1, 2))
#Change labels
target = np.zeros_like(target_)
target_local_1 = np.zeros_like(target_)
target_local_2 = np.zeros_like(target_)
#here only the classes in label_list (Vegetation and hier4 is not none) get mapped. Other classes in target_ including no-data value 9999999 are not mapped (corresponding value in target is 0)
#use the inversed mapping to map the predictions back to code
for i, code in enumerate(list(self.label_list.values())):
target[target_ == code] = self.label_list_glob[i]
target_local_1[target_ == code] = self.label_list_local_1[i]
target_local_2[target_ == code] = self.label_list_local_2[i]
X = torch.from_numpy(X)
target = torch.from_numpy(target).float()
target_local_1 = torch.from_numpy(target_local_1).float()
target_local_2 = torch.from_numpy(target_local_2).float()
if self.apply_cloud_masking or self.return_cloud_cover:
CC = torch.from_numpy(CC).float()
if self.eval_mode:
gt_instance = torch.from_numpy(gt_instance).float()
#keep values between 0-1
X = X * 1e-4
#Previous line should be modified as X = X / 4095 but not tested yet!
# Cloud masking
if self.apply_cloud_masking:
CC_mask = CC < self.cloud_threshold
CC_mask = CC_mask.view(CC_mask.shape[0],1,CC_mask.shape[1],CC_mask.shape[2])
X = X * CC_mask.float()
#augmentation
if self.eval_mode==False and np.random.rand() < self.augment_rate:
flip_dir = np.random.randint(3)
if flip_dir == 0:
X = X.flip(2)
target = target.flip(0)
target_local_1 = target_local_1.flip(0)
target_local_2 = target_local_2.flip(0)
elif flip_dir == 1:
X = X.flip(3)
target = target.flip(1)
target_local_1 = target_local_1.flip(1)
target_local_2 = target_local_2.flip(1)
elif flip_dir == 2:
X = X.flip(2,3)
target = target.flip(0,1)
target_local_1 = target_local_1.flip(0,1)
target_local_2 = target_local_2.flip(0,1)
if self.return_cloud_cover:
if self.eval_mode:
return X.float(), target.long(), target_local_1.long(), target_local_2.long(), gt_instance.long(), CC.float()
else:
return X.float(), target.long(), target_local_1.long(), target_local_2.long(), CC.float()
else:
if self.eval_mode:
return X.float(), target.long(), target_local_1.long(), target_local_2.long(), gt_instance.long()
else:
return X.float(), target.long(), target_local_1.long(), target_local_2.long()
def get_valid_list(self, mode):
valid = []
if mode == "train":
for k in self.canton_ids_train:
valid += self.data_canton_labels[k]
elif mode == "test":
for k in self.data_canton_labels.keys():
if k not in self.canton_ids_train:
valid += self.data_canton_labels[k]
return np.array(valid)
def get_rid_small_fg_tiles(self):
valid = np.ones(self.samples)
w,h = self.data["gt"][0,...,0].shape
for i in range(self.samples):
#if proportion of pixels in 24*24 patch is less than t, then this sample is marked as 0
if np.sum( self.data["gt"][i,...,0] != 0 )/(w*h) < self.t:
valid[i] = 0
#return the indices of samples marked as 1 in valid (binary array)
return np.nonzero(valid)[0]
def split(self, mode):
valid = np.zeros(self.samples)
if mode=='test':
valid[int(self.samples*0.75):] = 1.
elif mode=='train':
valid[:int(self.samples*0.75)] = 1.
else:
valid[:] = 1.
w,h = self.data["gt"][0,...,0].shape
for i in range(self.samples):
if np.sum( self.data["gt"][i,...,0] != 0 )/(w*h) < self.t:
valid[i] = 0
return np.nonzero(valid)[0]
def split_5fold(self, mode, fold):
if fold == 1:
test_s = int(0)
test_f = int(self.samples*0.2)
elif fold == 2:
test_s = int(self.samples*0.2)
test_f = int(self.samples*0.4)
elif fold == 3:
test_s = int(self.samples*0.4)
test_f = int(self.samples*0.6)
elif fold == 4:
test_s = int(self.samples*0.6)
test_f = int(self.samples*0.8)
elif fold == 5:
test_s = int(self.samples*0.8)
test_f = int(self.samples)
if mode=='test':
valid = np.zeros(self.samples)
valid[test_s:test_f] = 1.
elif mode=='train':
valid = np.ones(self.samples)
valid[test_s:test_f] = 0.
w,h = self.data["gt"][0,...,0].shape
# NOTE as self.t is set as 0, this function is actually not used. However, it can be used to further filter out some patches.
for i in range(self.samples):
if np.sum( self.data["gt"][i,...,0] != 0 )/(w*h) < self.t:
valid[i] = 0
return np.nonzero(valid)[0]
def split_train_test_23(self, mode, fold):
if fold == 1:
train_s = int(0)
train_f = int(self.samples * 0.4)
elif fold == 2:
train_s = int(self.samples * 0.2)
train_f = int(self.samples * 0.6)
elif fold == 3:
train_s = int(self.samples * 0.4)
train_f = int(self.samples * 0.8)
elif fold == 4:
train_s = int(self.samples * 0.6)
train_f = int(self.samples * 1.0)
if mode == 'test':
valid = np.ones(self.samples)
valid[train_s:train_f] = 0.
elif mode == 'train':
valid = np.zeros(self.samples)
valid[train_s:train_f] = 1.
w, h = self.data["gt"][0, ..., 0].shape
for i in range(self.samples):
if np.sum(self.data["gt"][i, ..., 0] != 0) / (w * h) < self.t:
valid[i] = 0
return np.nonzero(valid)[0]
def chooose_dates(self):
samples = self.data["cloud_cover"][0::10,...]
samples = np.mean(samples, axis=(0,2,3))
return np.nonzero(samples<0.1)
def chooose_dates_2(self):
data_dir = '/home/pf/pfstaff/projects/ozgur_deep_filed/data_crop_CH/train_set_24x24/'
DATA_YEAR = '2019'
date_list = []
batch_dirs = os.listdir(data_dir)
for batch_count, batch in enumerate(batch_dirs):
for filename in glob.iglob(data_dir + batch + '/**/patches_res_R10m.npz', recursive=True):
date = filename.find(DATA_YEAR)
date = filename[date:date+8]
if date not in date_list:
date_list.append(date)
dates_text_file = open("./dates_1.txt", "r")
specific_dates = dates_text_file.readlines()
print('Number of dates: ', len(specific_dates))
specific_date_indexes = np.zeros(len(specific_dates))
for i in range(len(specific_dates)):
specific_date_indexes[i] = date_list.index(specific_dates[i][:-1])
return specific_date_indexes.astype(int)
def data_stat(self):
class_labels = np.unique(self.label_list_glob)
class_names = np.unique(self.label_list_glob_name)
class_fq = np.zeros_like(class_labels)
for i in range(self.__len__()):
temp = self.__getitem__(i)[1].flatten()
for j in range(class_labels.shape[0]):
class_fq[j] += torch.sum(temp==class_labels[j])
for x in class_names:
print(x)
for x in class_fq:
print(x)