-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils_uncertainty.py
144 lines (108 loc) · 4.75 KB
/
utils_uncertainty.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Categorical
from sklearn.metrics import roc_auc_score
from loguru import logger
class _ECELoss(nn.Module):
"""
Calculates the Expected Calibration Error of a model.
(This isn't necessary for temperature scaling, just a cool metric).
The input to this loss is the logits of a model, NOT the softmax scores.
This divides the confidence outputs into equally-sized interval bins.
In each bin, we compute the confidence gap:
bin_gap = | avg_confidence_in_bin - accuracy_in_bin |
We then return a weighted average of the gaps, based on the number
of samples in each bin
See: Naeini, Mahdi Pakdaman, Gregory F. Cooper, and Milos Hauskrecht.
"Obtaining Well Calibrated Probabilities Using Bayesian Binning." AAAI.
2015.
"""
def __init__(self, n_bins=11):
"""
n_bins (int): number of confidence interval bins
"""
super(_ECELoss, self).__init__()
bin_boundaries = torch.linspace(0, 1, n_bins + 1)
self.bin_lowers = bin_boundaries[:-1]
self.bin_uppers = bin_boundaries[1:]
def forward(self, logits, labels):
softmaxes = F.softmax(logits, dim=1)
confidences, predictions = torch.max(softmaxes, 1)
accuracies = predictions.eq(labels)
ece = torch.zeros(1, device=logits.device)
accs = list()
confs = list()
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers):
# Calculated |confidence - accuracy| in each bin
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item())
prop_in_bin = in_bin.float().mean()
if prop_in_bin.item() > 0:
accuracy_in_bin = accuracies[in_bin].float().mean()
avg_confidence_in_bin = confidences[in_bin].mean()
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin
accs.append(accuracy_in_bin)
confs.append(avg_confidence_in_bin)
return ece, accs, confs
class Entropy(nn.Module):
"""
Calculates the entropy of the distribution and means over batch dimension
"""
def __init__(self, softmax=True):
super(Entropy, self).__init__()
self.softmax = softmax
def forward(self, logits):
if self.softmax:
logits = F.softmax(logits, dim=1)
entropy = Categorical(logits=logits).entropy().mean()
return entropy
class AUROC(nn.Module):
"""
Calculates the AUROC
(Area under the Receiving Operator Characteristic (ROC) curve)
for out-of-distribution (OOD) detection
"""
def __init__(self, softmax=True, equal_size=True):
super(AUROC, self).__init__()
self.softmax = softmax
self.equal_size = equal_size
def forward(self, id_logits, ood_logits):
if self.softmax:
id_logits = F.softmax(id_logits, dim=1)
ood_logits = F.softmax(ood_logits, dim=1)
if self.equal_size:
min_size = np.min((id_logits.shape[0], ood_logits.shape[0]))
id_logits = id_logits[:min_size,...]
ood_logits = ood_logits[:min_size,...]
id_conf_scores, _ = torch.max(id_logits, dim=1, keepdim=False)
ood_conf_scores, _ = torch.max(ood_logits, dim=1, keepdim=False)
id_targets = torch.ones_like(id_conf_scores)
od_targets = torch.zeros_like(ood_conf_scores)
y_pred = torch.cat((id_conf_scores, ood_conf_scores), dim=0).cpu().data.numpy()
y_target = torch.cat((id_targets, od_targets), dim=0).cpu().data.numpy()
score = roc_auc_score(y_target, y_pred)
logger.info('AUROC score: {:.4f}'.format(score))
return score
class function_space_analysis(nn.Module):
def __init__(self, w_softmax=True):
super(function_space_analysis, self).__init__()
self.w_softmax = w_softmax
self.lossFn = nn.KLDivLoss(reduction='batchmean', log_target=True)
def forward(self, logits_1, logits_2):
if not torch.is_tensor(logits_1):
logits_1 = torch.tensor(logits_1)
logits_2 = torch.tensor(logits_2)
if self.w_softmax:
logits_1 = F.log_softmax(logits_1, dim=1)
logits_2 = F.log_softmax(logits_2, dim=1)
distance = self.lossFn(logits_1,logits_2)
pred_1 = logits_1.max(1, keepdim=True)[1]
pred_2 = logits_2.max(1, keepdim=True)[1]
disagreement = torch.sum(pred_1 != pred_2)/pred_2.shape[0]
return disagreement, distance
def log_gradient(model):
import wandb
for name, param in model.named_parameters():
if param.requires_grad:
wandb.log({'grad/{}'.format(name[7:]): torch.norm(param.grad)})