forked from Bufius/vertminer-gpu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
driver-knc-spi-fpga.c
762 lines (638 loc) · 19.1 KB
/
driver-knc-spi-fpga.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
/*
* cgminer driver for KnCminer devices
*
* Copyright 2013 Con Kolivas <[email protected]>
* Copyright 2013 KnCminer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include <stdlib.h>
#include <assert.h>
#include <fcntl.h>
#include <limits.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include <linux/spi/spidev.h>
#include "logging.h"
#include "miner.h"
#define MAX_SPIS 1
#define MAX_BYTES_IN_SPI_XSFER 4096
/* /dev/spidevB.C, where B = bus, C = chipselect */
#define SPI_DEVICE_TEMPLATE "/dev/spidev%d.%d"
#define SPI_MODE (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH)
#define SPI_BITS_PER_WORD 32
#define SPI_MAX_SPEED 3000000
#define SPI_DELAY_USECS 0
/* Max number of ASICs permitted on one SPI device */
#define MAX_ASICS 6
/* How many hardware errors in a row before disabling the core */
#define HW_ERR_LIMIT 10
#define DISA_ERR_LIMIT 3
#define MAX_ACTIVE_WORKS (192 * 2 * 6 * 2)
#define WORK_MIDSTATE_WORDS 8
#define WORK_DATA_WORDS 3
#define WORK_STALE_US 60000000
/* Keep core disabled for no longer than 15 minutes */
#define CORE_DISA_PERIOD_US (15 * 60 * 1000000)
struct spidev_context {
int fd;
uint32_t speed;
uint16_t delay;
uint8_t mode;
uint8_t bits;
};
struct spi_request {
#define CMD_NOP 0
#define CMD_GET_VERSION 1
#define CMD_SUBMIT_WORK 2
#define CMD_FLUSH_QUEUE 3
#define WORK_ID_MASK 0x7FFF
#if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
uint32_t cmd :4;
uint32_t rsvd :1; /* set to zero */
uint32_t queue_id :12;
uint32_t work_id :15;
#else
uint32_t work_id :15;
uint32_t queue_id :12;
uint32_t rsvd :1; /* set to zero */
uint32_t cmd :4;
#endif
uint32_t midstate[WORK_MIDSTATE_WORDS];
uint32_t data[WORK_DATA_WORDS];
};
struct spi_response {
#define RESPONSE_TYPE_NOP 0
#define RESPONSE_TYPE_NONCE_FOUND 1
#define RESPONSE_TYPE_WORK_DONE 2
#if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
uint32_t type :2;
uint32_t asic :3;
uint32_t queue_id :12;
uint32_t work_id :15;
#else
uint32_t work_id :15;
uint32_t queue_id :12;
uint32_t asic :3;
uint32_t type :2;
#endif
uint32_t nonce;
uint32_t core;
};
#define MAX_REQUESTS_IN_BATCH ( MAX_BYTES_IN_SPI_XSFER / \
sizeof(struct spi_request) \
)
static struct spi_request spi_txbuf[MAX_REQUESTS_IN_BATCH];
#define MAX_RESPONSES_IN_BATCH ( (sizeof(spi_txbuf) - 12) / \
sizeof(struct spi_response) \
)
struct spi_rx_t {
#if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
uint32_t rsvd_1 :31;
uint32_t response_queue_full :1;
#else
uint32_t response_queue_full :1;
uint32_t rsvd_1 :31;
#endif
#if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
uint32_t rsvd_2 :16;
uint32_t works_accepted :16;
#else
uint32_t works_accepted :16;
uint32_t rsvd_2 :16;
#endif
uint32_t rsvd_3;
struct spi_response responses[MAX_RESPONSES_IN_BATCH];
};
static struct spi_rx_t spi_rxbuf;
struct active_work {
struct work *work;
uint32_t work_id;
struct timeval begin;
};
struct core_disa_data {
struct timeval disa_begin;
uint8_t asic;
uint8_t core;
};
struct knc_state {
struct spidev_context *ctx;
int devices;
uint32_t salt;
uint32_t next_work_id;
/* read - last read item, next is at (read + 1) mod BUFSIZE
* write - next write item, last written at (write - 1) mod BUFSIZE
* When buffer is empty, read + 1 == write
* Buffer full condition: read == write
*/
int read_q, write_q;
#define KNC_QUEUED_BUFFER_SIZE (MAX_REQUESTS_IN_BATCH + 1)
struct active_work queued_fifo[KNC_QUEUED_BUFFER_SIZE];
int read_a, write_a;
#define KNC_ACTIVE_BUFFER_SIZE (MAX_ACTIVE_WORKS + 1)
struct active_work active_fifo[KNC_ACTIVE_BUFFER_SIZE];
uint8_t hwerrs[MAX_ASICS * 256];
uint8_t disa_cnt[MAX_ASICS * 256];
uint32_t hwerr_work_id[MAX_ASICS * 256];
int read_d, write_d;
#define KNC_DISA_CORES_SIZE (MAX_ASICS * 256)
struct core_disa_data disa_cores_fifo[KNC_DISA_CORES_SIZE];
pthread_mutex_t lock;
};
static inline bool knc_queued_fifo_full(struct knc_state *knc)
{
return (knc->read_q == knc->write_q);
}
static inline bool knc_active_fifo_full(struct knc_state *knc)
{
return (knc->read_a == knc->write_a);
}
static inline void knc_queued_fifo_inc_idx(int *idx)
{
if (unlikely(*idx >= ((int)KNC_QUEUED_BUFFER_SIZE - 1)))
*idx = 0;
else
++(*idx);
}
static inline void knc_active_fifo_inc_idx(int *idx)
{
if (unlikely(*idx >= (KNC_ACTIVE_BUFFER_SIZE - 1)))
*idx = 0;
else
++(*idx);
}
static inline void knc_disa_cores_fifo_inc_idx(int *idx)
{
if (unlikely(*idx >= (KNC_DISA_CORES_SIZE - 1)))
*idx = 0;
else
++(*idx);
}
/* Find SPI device with index idx, init it */
static struct spidev_context *spi_new(int idx)
{
struct spidev_context *ctx;
char dev_fname[PATH_MAX];
if (NULL == (ctx = malloc(sizeof(struct spidev_context)))) {
applog(LOG_ERR, "KnC spi: Out of memory");
goto l_exit_error;
}
ctx->mode = SPI_MODE;
ctx->bits = SPI_BITS_PER_WORD;
ctx->speed = SPI_MAX_SPEED;
ctx->delay = SPI_DELAY_USECS;
ctx->fd = -1;
sprintf(dev_fname, SPI_DEVICE_TEMPLATE,
idx, /* bus */
0 /* chipselect */
);
if (0 > (ctx->fd = open(dev_fname, O_RDWR))) {
applog(LOG_ERR, "KnC spi: Can not open SPI device %s: %m",
dev_fname);
goto l_free_exit_error;
}
/*
* spi mode
*/
if (0 > ioctl(ctx->fd, SPI_IOC_WR_MODE, &ctx->mode))
goto l_ioctl_error;
if (0 > ioctl(ctx->fd, SPI_IOC_RD_MODE, &ctx->mode))
goto l_ioctl_error;
/*
* bits per word
*/
if (0 > ioctl(ctx->fd, SPI_IOC_WR_BITS_PER_WORD, &ctx->bits))
goto l_ioctl_error;
if (0 > ioctl(ctx->fd, SPI_IOC_RD_BITS_PER_WORD, &ctx->bits))
goto l_ioctl_error;
/*
* max speed hz
*/
if (0 > ioctl(ctx->fd, SPI_IOC_WR_MAX_SPEED_HZ, &ctx->speed))
goto l_ioctl_error;
if (0 > ioctl(ctx->fd, SPI_IOC_RD_MAX_SPEED_HZ, &ctx->speed))
goto l_ioctl_error;
applog(LOG_INFO, "KnC spi: device %s uses mode %hhu, bits %hhu, speed %u",
dev_fname, ctx->mode, ctx->bits, ctx->speed);
return ctx;
l_ioctl_error:
applog(LOG_ERR, "KnC spi: ioctl error on SPI device %s: %m", dev_fname);
close(ctx->fd);
l_free_exit_error:
free(ctx);
l_exit_error:
return NULL;
}
static void spi_free(struct spidev_context *ctx)
{
if (NULL == ctx)
return;
close(ctx->fd);
free(ctx);
}
static int spi_transfer(struct spidev_context *ctx, uint8_t *txbuf,
uint8_t *rxbuf, int len)
{
struct spi_ioc_transfer xfr;
int ret;
memset(rxbuf, 0xff, len);
ret = len;
xfr.tx_buf = (unsigned long)txbuf;
xfr.rx_buf = (unsigned long)rxbuf;
xfr.len = len;
xfr.speed_hz = ctx->speed;
xfr.delay_usecs = ctx->delay;
xfr.bits_per_word = ctx->bits;
xfr.cs_change = 0;
xfr.pad = 0;
if (1 > (ret = ioctl(ctx->fd, SPI_IOC_MESSAGE(1), &xfr)))
applog(LOG_ERR, "KnC spi xfer: ioctl error on SPI device: %m");
return ret;
}
static void disable_core(uint8_t asic, uint8_t core)
{
char str[256];
snprintf(str, sizeof(str), "i2cset -y 2 0x2%hhu %hhu 0", asic, core);
if (0 != WEXITSTATUS(system(str)))
applog(LOG_ERR, "KnC: system call failed");
}
static void enable_core(uint8_t asic, uint8_t core)
{
char str[256];
snprintf(str, sizeof(str), "i2cset -y 2 0x2%hhu %hhu 1", asic, core);
if (0 != WEXITSTATUS(system(str)))
applog(LOG_ERR, "KnC: system call failed");
}
static int64_t timediff(const struct timeval *a, const struct timeval *b)
{
struct timeval diff;
timersub(a, b, &diff);
return diff.tv_sec * 1000000 + diff.tv_usec;
}
static void knc_check_disabled_cores(struct knc_state *knc)
{
struct core_disa_data *core;
int next_read_d, cidx;
struct timeval now;
int64_t us;
next_read_d = knc->read_d;
knc_disa_cores_fifo_inc_idx(&next_read_d);
if (next_read_d == knc->write_d)
return; /* queue empty */
core = &knc->disa_cores_fifo[next_read_d];
gettimeofday(&now, NULL);
us = timediff(&now, &core->disa_begin);
if ((us >= 0) && (us < CORE_DISA_PERIOD_US))
return; /* latest disabled core still not expired */
cidx = core->asic * 256 + core->core;
enable_core(core->asic, core->core);
knc->hwerrs[cidx] = 0;
applog(LOG_NOTICE,
"KnC: core %u-%u was enabled back from disabled state",
core->asic, core->core);
knc->read_d = next_read_d;
}
static void knc_work_from_queue_to_spi(struct knc_state *knc,
struct active_work *q_work,
struct spi_request *spi_req)
{
uint32_t *buf_from, *buf_to;
int i;
spi_req->cmd = CMD_SUBMIT_WORK;
spi_req->queue_id = 0; /* at the moment we have one and only queue #0 */
spi_req->work_id = (knc->next_work_id ^ knc->salt) & WORK_ID_MASK;
q_work->work_id = spi_req->work_id;
++(knc->next_work_id);
buf_to = spi_req->midstate;
buf_from = (uint32_t *)q_work->work->midstate;
for (i = 0; i < WORK_MIDSTATE_WORDS; ++i)
buf_to[i] = le32toh(buf_from[8 - i - 1]);
buf_to = spi_req->data;
buf_from = (uint32_t *)&(q_work->work->data[16 * 4]);
for (i = 0; i < WORK_DATA_WORDS; ++i)
buf_to[i] = le32toh(buf_from[3 - i - 1]);
}
static int64_t knc_process_response(struct thr_info *thr, struct cgpu_info *cgpu,
struct spi_rx_t *rxbuf)
{
struct knc_state *knc = cgpu->device_data;
int submitted, successful, i, num_sent;
int next_read_q, next_read_a;
struct timeval now;
struct work *work;
int64_t us;
num_sent = knc->write_q - knc->read_q - 1;
if (knc->write_q <= knc->read_q)
num_sent += KNC_QUEUED_BUFFER_SIZE;
/* Actually process SPI response */
if (rxbuf->works_accepted) {
applog(LOG_DEBUG, "KnC spi: raw response %08X %08X",
((uint32_t *)rxbuf)[0], ((uint32_t *)rxbuf)[1]);
applog(LOG_DEBUG,
"KnC spi: response, accepted %u (from %u), full %u",
rxbuf->works_accepted, num_sent,
rxbuf->response_queue_full);
}
/* move works_accepted number of items from queued_fifo to active_fifo */
gettimeofday(&now, NULL);
submitted = 0;
for (i = 0; i < rxbuf->works_accepted; ++i) {
next_read_q = knc->read_q;
knc_queued_fifo_inc_idx(&next_read_q);
if ((next_read_q == knc->write_q) || knc_active_fifo_full(knc))
break;
memcpy(&knc->active_fifo[knc->write_a],
&knc->queued_fifo[next_read_q],
sizeof(struct active_work));
knc->active_fifo[knc->write_a].begin = now;
knc->queued_fifo[next_read_q].work = NULL;
knc->read_q = next_read_q;
knc_active_fifo_inc_idx(&knc->write_a);
++submitted;
}
if (submitted != rxbuf->works_accepted) {
applog(LOG_ERR,
"KnC: accepted by FPGA %u works, but only %d submitted",
rxbuf->works_accepted, submitted);
}
/* check for completed works and calculated nonces */
gettimeofday(&now, NULL);
successful = 0;
for (i = 0; i < (int)MAX_RESPONSES_IN_BATCH; ++i) {
if ((rxbuf->responses[i].type != RESPONSE_TYPE_NONCE_FOUND) &&
(rxbuf->responses[i].type != RESPONSE_TYPE_WORK_DONE))
continue;
applog(LOG_DEBUG, "KnC spi: raw response %08X %08X",
((uint32_t *)&rxbuf->responses[i])[0],
((uint32_t *)&rxbuf->responses[i])[1]);
applog(LOG_DEBUG, "KnC spi: response, T:%u C:%u-%u Q:%u W:%u",
rxbuf->responses[i].type,
rxbuf->responses[i].asic, rxbuf->responses[i].core,
rxbuf->responses[i].queue_id,
rxbuf->responses[i].work_id);
/* Find active work with matching ID */
next_read_a = knc->read_a;
knc_active_fifo_inc_idx(&next_read_a);
while (next_read_a != knc->write_a) {
if (knc->active_fifo[next_read_a].work_id ==
rxbuf->responses[i].work_id)
break;
/* check for stale works */
us = timediff(&now,
&knc->active_fifo[next_read_a].begin);
if ((us < 0) || (us >= WORK_STALE_US)) {
applog(LOG_DEBUG,
"KnC spi: remove stale work %u",
knc->active_fifo[next_read_a].work_id);
work = knc->active_fifo[next_read_a].work;
knc_active_fifo_inc_idx(&knc->read_a);
work_completed(cgpu, work);
if (next_read_a != knc->read_a) {
memcpy(&(knc->active_fifo[next_read_a]),
&(knc->active_fifo[knc->read_a]),
sizeof(struct active_work));
}
knc->active_fifo[knc->read_a].work = NULL;
}
knc_active_fifo_inc_idx(&next_read_a);
}
if (next_read_a == knc->write_a)
continue;
applog(LOG_DEBUG, "KnC spi: response work %u found",
rxbuf->responses[i].work_id);
work = knc->active_fifo[next_read_a].work;
if (rxbuf->responses[i].type == RESPONSE_TYPE_NONCE_FOUND) {
if (NULL != thr) {
int cidx = rxbuf->responses[i].asic * 256 +
rxbuf->responses[i].core;
if (submit_nonce(thr, work,
rxbuf->responses[i].nonce)) {
if (cidx < (int)sizeof(knc->hwerrs)) {
knc->hwerrs[cidx] = 0;
knc->disa_cnt[cidx] = 0;
knc->hwerr_work_id[cidx] = 0xFFFFFFFF;
}
successful++;
} else {
if ((cidx < (int)sizeof(knc->hwerrs)) &&
(knc->hwerr_work_id[cidx] != rxbuf->responses[i].work_id)) {
knc->hwerr_work_id[cidx] = rxbuf->responses[i].work_id;
if (++(knc->hwerrs[cidx]) >= HW_ERR_LIMIT) {
struct core_disa_data *core;
core = &knc->disa_cores_fifo[knc->write_d];
core->disa_begin = now;
core->asic = rxbuf->responses[i].asic;
core->core = rxbuf->responses[i].core;
disable_core(core->asic, core->core);
if (++(knc->disa_cnt[cidx]) >= DISA_ERR_LIMIT) {
applog(LOG_WARNING,
"KnC: core %u-%u was disabled permanently", core->asic, core->core);
} else {
applog(LOG_WARNING,
"KnC: core %u-%u was disabled due to %u HW errors in a row",
core->asic, core->core, HW_ERR_LIMIT);
knc_disa_cores_fifo_inc_idx(&knc->write_d);
}
}
}
};
}
continue;
}
/* Work completed */
knc_active_fifo_inc_idx(&knc->read_a);
work_completed(cgpu, work);
if (next_read_a != knc->read_a) {
memcpy(&(knc->active_fifo[next_read_a]),
&(knc->active_fifo[knc->read_a]),
sizeof(struct active_work));
}
knc->active_fifo[knc->read_a].work = NULL;
}
return ((uint64_t)successful) * 0x100000000UL;
}
/* Send flush command via SPI */
static int _internal_knc_flush_fpga(struct knc_state *knc)
{
int len;
spi_txbuf[0].cmd = CMD_FLUSH_QUEUE;
spi_txbuf[0].queue_id = 0; /* at the moment we have one and only queue #0 */
len = spi_transfer(knc->ctx, (uint8_t *)spi_txbuf,
(uint8_t *)&spi_rxbuf, sizeof(struct spi_request));
if (len != sizeof(struct spi_request))
return -1;
len /= sizeof(struct spi_response);
return len;
}
static bool knc_detect_one(struct spidev_context *ctx)
{
/* Scan device for ASICs */
int chip_id, devices = 0;
struct cgpu_info *cgpu;
struct knc_state *knc;
for (chip_id = 0; chip_id < MAX_ASICS; ++chip_id) {
/* TODO: perform the ASIC test/detection */
++devices;
}
if (!devices) {
applog(LOG_INFO, "SPI detected, but not KnCminer ASICs");
return false;
}
applog(LOG_INFO, "Found a KnC miner with %d ASICs", devices);
cgpu = calloc(1, sizeof(*cgpu));
knc = calloc(1, sizeof(*knc));
if (!cgpu || !knc) {
applog(LOG_ERR, "KnC miner detected, but failed to allocate memory");
return false;
}
knc->ctx = ctx;
knc->devices = devices;
knc->read_q = 0;
knc->write_q = 1;
knc->read_a = 0;
knc->write_a = 1;
knc->read_d = 0;
knc->write_d = 1;
knc->salt = rand();
mutex_init(&knc->lock);
memset(knc->hwerr_work_id, 0xFF, sizeof(knc->hwerr_work_id));
_internal_knc_flush_fpga(knc);
cgpu->drv = &knc_drv;
cgpu->name = "KnCminer";
cgpu->threads = 1; // .. perhaps our number of devices?
cgpu->device_data = knc;
add_cgpu(cgpu);
return true;
}
// http://www.concentric.net/~Ttwang/tech/inthash.htm
static unsigned long mix(unsigned long a, unsigned long b, unsigned long c)
{
a = a - b; a = a - c; a = a ^ (c >> 13);
b = b - c; b = b - a; b = b ^ (a << 8);
c = c - a; c = c - b; c = c ^ (b >> 13);
a = a - b; a = a - c; a = a ^ (c >> 12);
b = b - c; b = b - a; b = b ^ (a << 16);
c = c - a; c = c - b; c = c ^ (b >> 5);
a = a - b; a = a - c; a = a ^ (c >> 3);
b = b - c; b = b - a; b = b ^ (a << 10);
c = c - a; c = c - b; c = c ^ (b >> 15);
return c;
}
/* Probe devices and register with add_cgpu */
void knc_detect(bool __maybe_unused hotplug)
{
int idx;
srand(mix(clock(), time(NULL), getpid()));
/* Loop through all possible SPI interfaces */
for (idx = 0; idx < MAX_SPIS; ++idx) {
struct spidev_context *ctx = spi_new(idx + 1);
if (ctx != NULL) {
if (!knc_detect_one(ctx))
spi_free(ctx);
}
}
}
/* return value is number of nonces that have been checked since
* previous call
*/
static int64_t knc_scanwork(struct thr_info *thr)
{
struct cgpu_info *cgpu = thr->cgpu;
struct knc_state *knc = cgpu->device_data;
int len, num, next_read_q;
int64_t ret;
applog(LOG_DEBUG, "KnC running scanwork");
knc_check_disabled_cores(knc);
/* Prepare tx buffer */
memset(spi_txbuf, 0, sizeof(spi_txbuf));
num = 0;
mutex_lock(&knc->lock);
next_read_q = knc->read_q;
knc_queued_fifo_inc_idx(&next_read_q);
while (next_read_q != knc->write_q) {
knc_work_from_queue_to_spi(knc, &knc->queued_fifo[next_read_q],
&spi_txbuf[num]);
knc_queued_fifo_inc_idx(&next_read_q);
++num;
}
/* knc->read_q is advanced in knc_process_response, not here */
len = spi_transfer(knc->ctx, (uint8_t *)spi_txbuf,
(uint8_t *)&spi_rxbuf, sizeof(spi_txbuf));
if (len != sizeof(spi_rxbuf)) {
ret = -1;
goto out_unlock;
}
applog(LOG_DEBUG, "KnC spi: %d works in request", num);
ret = knc_process_response(thr, cgpu, &spi_rxbuf);
out_unlock:
mutex_unlock(&knc->lock);
return ret;
}
static bool knc_queue_full(struct cgpu_info *cgpu)
{
struct knc_state *knc = cgpu->device_data;
int queue_full = false;
struct work *work;
applog(LOG_DEBUG, "KnC running queue full");
mutex_lock(&knc->lock);
if (knc_queued_fifo_full(knc)) {
queue_full = true;
goto out_unlock;
}
work = get_queued(cgpu);
if (!work)
goto out_unlock;
knc->queued_fifo[knc->write_q].work = work;
knc_queued_fifo_inc_idx(&(knc->write_q));
if (knc_queued_fifo_full(knc))
queue_full = true;
out_unlock:
mutex_unlock(&knc->lock);
return queue_full;
}
static void knc_flush_work(struct cgpu_info *cgpu)
{
struct knc_state *knc = cgpu->device_data;
int len, next_read_q, next_read_a;
struct work *work;
applog(LOG_ERR, "KnC running flushwork");
mutex_lock(&knc->lock);
/* Drain queued works */
next_read_q = knc->read_q;
knc_queued_fifo_inc_idx(&next_read_q);
while (next_read_q != knc->write_q) {
work = knc->queued_fifo[next_read_q].work;
work_completed(cgpu, work);
knc->queued_fifo[next_read_q].work = NULL;
knc->read_q = next_read_q;
knc_queued_fifo_inc_idx(&next_read_q);
}
/* Drain active works */
next_read_a = knc->read_a;
knc_active_fifo_inc_idx(&next_read_a);
while (next_read_a != knc->write_a) {
work = knc->active_fifo[next_read_a].work;
work_completed(cgpu, work);
knc->active_fifo[next_read_a].work = NULL;
knc->read_a = next_read_a;
knc_active_fifo_inc_idx(&next_read_a);
}
len = _internal_knc_flush_fpga(knc);
if (len > 0)
knc_process_response(NULL, cgpu, &spi_rxbuf);
mutex_unlock(&knc->lock);
}
struct device_drv knc_drv = {
.drv_id = DRIVER_knc,
.dname = "KnCminer",
.name = "KnC",
.drv_detect = knc_detect, // Probe for devices, add with add_cgpu
.hash_work = hash_queued_work,
.scanwork = knc_scanwork,
.queue_full = knc_queue_full,
.flush_work = knc_flush_work,
};