-
Notifications
You must be signed in to change notification settings - Fork 1
/
run.py
852 lines (769 loc) · 33.5 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=text-generation
"""
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
import logging
import math
import os
import sys
import torch.distributed as dist
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional
import datasets
import torch
from datasets import load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING,
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
is_torch_tpu_available,
set_seed,
)
from transformers.testing_utils import CaptureLogger
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from data import NumpyDataset, RenderTextCollator
from streaming_data import get_multiple_domain_dataset, MDSDataset
from modeling.modeling_ptp import inject_flash_attention_ptp
from modeling.modeling_pixel import inject_flash_attention_pixel
from modeling.modeling_screenshot_llama import inject_flash_attention_screenshotllama
from modeling.configuration_ptp import PTPConfig
from modeling.configuration_pixel import PIXELConfig
from modeling.configuration_screenshot_llama import LlamaScreenshotConfig
from modeling.modeling_screenshot_llama import LlamaForScreenshot
from trainer import trainer_addon
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_overrides: Optional[str] = field(
default=None,
metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
torch_dtype: Optional[str] = field(
default=None,
metadata={
"help": (
"Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
"dtype will be automatically derived from the model's weights."
),
"choices": ["auto", "bfloat16", "float16", "float32"],
},
)
load_bf16: bool = field(
default=False,
metadata={
"help": (
"Load the model in bf16 (for llama-based models)"
)
},
)
low_cpu_mem_usage: bool = field(
default=False,
metadata={
"help": (
"It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded."
"set True will benefit LLM loading time and RAM consumption."
)
},
)
flash_attn: bool = field(
default=False,
metadata={
"help": "Add flash attention (1.0)"
}
)
hf_flash_attn2: bool = field(
default=False,
metadata={
"help": "Add HF's flash attention 2.0 (only support BF16)"
}
)
mask_ratio: float = field(
default=0,
metadata={
"help": "Mask ratio for patch masking"
}
)
span_masking: bool = field(
default=False,
metadata={
"help": "Apply PIXEL style span masking"
}
)
max_span_length: int = field(
default=6,
metadata={"help": "For span masking: max span length"}
)
mae_weight: float = field(
default=1.0,
metadata={
"help": "The weight for the patch prediction (MAE) loss"
}
)
text_weight: float = field(
default=1.0,
metadata={
"help": "The weight for text prediction loss"
}
)
add_mae_decoder: bool = field(
default=False,
metadata={
"help": "Add MAE decoder"
}
)
add_text_decoder: bool = field(
default=True,
metadata={
"help": "Add text decoder"
}
)
tie_word_embeddings: bool = field(
default=True,
metadata={
"help": "Tie word embeddings"
}
)
pixel: bool = field(
default=False,
metadata={"help": "The model is PIXEL"}
)
screenshot_llama: bool = field(
default=False,
metadata={"help": "The model is screenshot-llama"}
)
llama: bool = field(
default=False,
metadata={"help": "The model is text-only llama"}
)
norm_pix_loss: bool = field(
default=True,
metadata={"help": "Norm pix loss (standardize the target pixels before calculating the loss)"}
)
ignore_mismatched_sizes: bool = field(
default=False,
metadata={"help": "Ignore mismatched sizes"}
)
ar_text_weight: float = field(
default=1.0,
metadata={
"help": "Weight for the text loss in autoregressive models"
}
)
ar_pixel_weight: float = field(
default=1.0,
metadata={
"help": "Wight for the patch prediction loss in autoregressive models"
}
)
embedding_layernorm: bool = field(
default=False,
metadata={"help": "Add a layernorm layer after the embedding"}
)
def __post_init__(self):
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
"--config_overrides can't be used in combination with --config_name or --model_name_or_path"
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
block_size: Optional[int] = field(
default=1024,
metadata={
"help": (
"Optional input sequence length after tokenization. "
"The training dataset will be truncated in block of this size for training. "
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
keep_linebreaks: bool = field(
default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
)
font_size: int = field(
default=10, metadata={"help": "Font size for online rendering"}
)
line_space: int = field(
default=6, metadata={"help": "(Extra) line space for online rendering. The final height of one line is font_size + line_space"}
)
replace_new_line: bool = field(
default=True, metadata={"help": "Replace new line with a special token (to save rendering space)"}
)
new_line_token: str = field(
default="//",
)
rendered_as_target: bool = field(
default=True, metadata={"help": "Only use the rendered text as the text target and pad the rest"}
)
text_mask_rate: float = field(
default=0,
metadata={
"help": "Text mask rate"
}
)
merge_text_masks: bool = field(
default=True,
metadata={
"help": "Merge consecutive text masks"
}
)
ignore_white_patches: bool = field(
default=True,
metadata={
"help": "Ignore white patches: exclude them in attn masks; do not mask them"
}
)
remove_unicode: bool = field(
default=False,
metadata={
"help": "Remove all unicode characters"
}
)
add_black_patch: bool = field(
default=False,
metadata={
"help": "Add black patch to the image after the text ends"
}
)
add_prefix: bool = field(
default=False,
metadata={
"help": "Add a text prefix at the beginning of the image"
}
)
autoregressive: bool = field(
default=False,
metadata={
"help": "Autoregressive style training for screenshot-llama"
}
)
ar_image_block_size: int = field(
default=256,
metadata={
"help": "(For autoregressive) number of tokens rendered in the screenshot"
}
)
total_block_size: int = field(
default=None,
metadata={
"help": "(For autoregressive) total number of tokens"
}
)
context_mask: int = field(
default=None,
metadata={
"help": "(For autoregressive) do not calculate loss on the first x tokens"
}
)
image_mode: str = field(
default="RGB",
metadata={
"help": "Image mode"
}
)
streaming_dataset: bool = field(
default=False, metadata={"help": "Whether to use streaming dataset (mosiac) or not."}
)
streaming_train_root: str = field(
default=None, metadata={"help": "The root directory of the streaming training dataset."}
)
streaming_val_root: str = field(
default=None, metadata={"help": "The root directory of the streaming validation dataset."}
)
streaming_domains: str = field(
default=None, metadata={"help": "The domains/proportions of the streaming dataset. Should be a JSON string."}
)
streaming_remote: bool = field(
default=False, metadata={"help": "Whether to use remote streaming dataset or not."}
)
sample_mask_at_collator: bool = field(
default=False, metadata={"help": "Sample masks in the data loading part instead of the model part."}
)
def __post_init__(self):
if self.streaming:
require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")
if self.dataset_name is None and self.train_file is None and self.validation_file is None and not self.streaming_dataset:
raise ValueError("Need either a dataset name or a training/validation file.")
@dataclass
class OurTrainingArguments(TrainingArguments):
log_eval_image_pred: bool = field(
default=False,
metadata={"help": "Log eval image prediction to wandb"}
)
width: int = field(
default=512, metadata={"help": "Width of the input image"}
)
height: int = field(
default=256, metadata={"help": "Height of the input image"}
)
patch_width: int = field(
default=16, metadata={"help": "Width of the patch"}
)
patch_height: int = field(
default=16, metadata={"help": "Height of the patch"}
)
cosine_w_min: bool = field(
default=False, metadata={"help": "Cosine scheduler with min lr (only activated when using cosine)"}
)
min_learning_rate: float = field(
default=0, metadata={"help": "Minimum learning rate"}
)
log_grad_norm: bool = field(
default=False, metadata={"help": "Log grad norm"}
)
log_train_input: bool = field(
default=False, metadata={"help": "Log train input"}
)
def get_model_and_processor(model_args, training_args, config):
model_kwargs = {}
if model_args.hf_flash_attn2:
assert not model_args.flash_attn # Cannot use this with flash attention 1 together
assert model_args.screenshot_llama or model_args.llama # Only support llama-based models
model_kwargs["use_flash_attention_2"] = True
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
model_kwargs["torch_dtype"] = torch_dtype
if model_args.screenshot_llama:
config.model_type = "screenshot-llama"
from modeling.processing_screenshot_llama import ScreenshotLlamaProcessor
processor_kwargs = {}
if not (training_args.patch_height == 16 and training_args.patch_width == 16):
processor_kwargs = {"patch_size": {"height": training_args.patch_height, "width": training_args.patch_width}}
config.patch_embed_size = training_args.patch_height * training_args.patch_width * 3
processor = ScreenshotLlamaProcessor(model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, **processor_kwargs)
config.img_begin_token_id = processor.img_begin_token_id
config.img_end_token_id = processor.img_end_token_id
config.patch_token_id = processor.patch_token_id
config.newline_token_id = processor.newline_token_id
config.norm_pix_loss = model_args.norm_pix_loss
if model_args.model_name_or_path:
model = LlamaForScreenshot.from_pretrained(model_args.model_name_or_path, config=config, **model_kwargs)
if model_args.load_bf16:
model = model.to(dtype=torch.bfloat16)
else:
if model_args.hf_flash_attn2:
config._flash_attn_2_enabled = True
model = LlamaForScreenshot._from_config(config, torch_dtype=torch_dtype)
if model_args.load_bf16:
model = model.to(dtype=torch.bfloat16)
n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
# Add the special tokens for image boundary
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(processor.tokenizer) > embedding_size:
model.resize_token_embeddings(len(processor.tokenizer))
model.ar_text_weight = model_args.ar_text_weight
model.ar_pixel_weight = model_args.ar_pixel_weight
return processor, model
elif model_args.llama:
from modeling.processing_screenshot_llama import ScreenshotLlamaProcessor
from transformers import LlamaForCausalLM
processor_kwargs = {}
processor = ScreenshotLlamaProcessor(model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, **processor_kwargs)
if model_args.model_name_or_path:
model = LlamaForCausalLM.from_pretrained(model_args.model_name_or_path, config=config, **model_kwargs)
if model_args.load_bf16:
model = model.to(dtype=torch.bfloat16)
else:
if model_args.hf_flash_attn2:
config._flash_attn_2_enabled = True
model = LlamaForCausalLM._from_config(config, torch_dtype=torch_dtype)
if model_args.load_bf16:
model = model.to(dtype=torch.bfloat16)
n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(processor.tokenizer) > embedding_size:
model.resize_token_embeddings(len(processor.tokenizer))
return processor, model
elif config.model_type in ['ptp']:
# Our main model
from modeling.processing_ptp import PTPProcessor
from modeling.modeling_ptp import PTPForConditionalGeneration
config.add_mae_decoder = model_args.add_mae_decoder
if model_args.add_mae_decoder:
config.mae_weight = model_args.mae_weight
config.add_text_decoder = model_args.add_text_decoder
if model_args.add_text_decoder:
config.text_weight = model_args.text_weight
config.tie_word_embeddings = model_args.tie_word_embeddings
config.text_config.tie_word_embeddings = model_args.tie_word_embeddings
config.vision_config.embedding_layernorm = model_args.embedding_layernorm
config.vision_config.norm_pix_loss = model_args.norm_pix_loss
config.vision_config.image_size = [
training_args.height,
training_args.width,
]
if not (training_args.patch_height == 16 and training_args.patch_width == 16):
config.vision_config.patch_size = (training_args.patch_height, training_args.patch_width)
config.vision_config.num_channels = 3 if config.image_mode == "RGB" else 1
processor = PTPProcessor.from_pretrained(model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path)
if not (training_args.patch_height == 16 and training_args.patch_width == 16):
processor.image_processor.patch_size = {"height": training_args.patch_height, "width": training_args.patch_width}
if model_args.model_name_or_path:
model = PTPForConditionalGeneration.from_pretrained(model_args.model_name_or_path, config=config)
if model_args.load_bf16:
model = model.to(dtype=torch.bfloat16)
else:
model = PTPForConditionalGeneration(config)
if model_args.load_bf16:
model = model.to(dtype=torch.bfloat16)
n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
model.mask_ratio = model_args.mask_ratio
model.mae_weight = model_args.mae_weight
model.text_weight = model_args.text_weight
model.encoder.embeddings.mask_ratio = model_args.mask_ratio
model.encoder.embeddings.span_masking = model_args.span_masking
return processor, model
elif config.model_type in ['pixel']:
from modeling.processing_ptp import PTPProcessor
from modeling.modeling_pixel import PIXELForPreTraining
config.embedding_layernorm = model_args.embedding_layernorm
config.norm_pix_loss = model_args.norm_pix_loss
config.image_size = [
training_args.height,
training_args.width,
]
if not (training_args.patch_height == 16 and training_args.patch_width == 16):
config.patch_size = (training_args.patch_height, training_args.patch_width)
config.num_channels = 3 if config.image_mode == "RGB" else 1
processor = PTPProcessor.from_pretrained(model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path)
if not (training_args.patch_height == 16 and training_args.patch_width == 16):
processor.image_processor.patch_size = {"height": training_args.patch_height, "width": training_args.patch_width}
if model_args.model_name_or_path:
model = PIXELForPreTraining.from_pretrained(model_args.model_name_or_path, config=config, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes)
if model_args.load_bf16:
model = model.to(dtype=torch.bfloat16)
else:
model = PIXELForPreTraining(config)
if model_args.load_bf16:
model = model.to(dtype=torch.bfloat16)
n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
model.vit.embeddings.mask_ratio = model_args.mask_ratio
model.vit.embeddings.span_masking = model_args.span_masking
return processor, model
else:
raise NotImplementedError
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, OurTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
elif len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"):
model_args, data_args, training_args = parser.parse_yaml_file(yaml_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and (training_args.do_train or training_args.check_dataset) and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
if data_args.streaming_dataset:
train_dataset = get_multiple_domain_dataset(root_dir=data_args.streaming_train_root, shuffle=True, remote=data_args.streaming_remote, block_size=data_args.block_size)
eval_dataset = get_multiple_domain_dataset(root_dir=data_args.streaming_val_root, shuffle=False, remote=data_args.streaming_remote, block_size=data_args.block_size)
else:
dataset_class = NumpyDataset
logger.info("Loading train dataset (numpy)...")
train_dataset = dataset_class(data_args.train_file, block_size=data_args.block_size) if data_args.train_file is not None else None
logger.info("Done")
logger.info("Loading validation dataset (numpy)...")
eval_dataset = dataset_class(data_args.validation_file, block_size=data_args.block_size) if data_args.validation_file is not None else None
logger.info("Done")
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.screenshot_llama:
config_cls = LlamaScreenshotConfig
elif model_args.llama:
config_cls = AutoConfig
elif model_args.pixel:
config_cls = PIXELConfig
else:
config_cls = PTPConfig
if model_args.config_name:
config = config_cls.from_pretrained(model_args.config_name, **config_kwargs)
elif model_args.model_name_or_path:
config = config_cls.from_pretrained(model_args.model_name_or_path, **config_kwargs)
config.image_mode = data_args.image_mode
training_args.image_mode = data_args.image_mode
processor, model = get_model_and_processor(model_args, training_args, config)
if model_args.flash_attn:
if model_args.screenshot_llama or model_args.llama:
inject_flash_attention_screenshotllama(model)
elif model_args.pixel:
inject_flash_attention_pixel(model)
else:
inject_flash_attention_ptp(model)
inject_flash_attention_pixel(model.encoder)
if hasattr(model, "mae_decoder"):
inject_flash_attention_pixel(model.mae_decoder)
if training_args.do_train:
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
if training_args.do_eval:
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
def preprocess_logits_for_metrics(logits, labels):
if isinstance(logits, tuple):
# Depending on the model and config, logits may contain extra tensors,
# like past_key_values, but logits always come first
logits = logits[0]
return logits.argmax(dim=-1)
collator = RenderTextCollator(
processor=processor,
font_size=data_args.font_size,
line_space=data_args.line_space,
replace_new_line=data_args.replace_new_line,
new_line_token=data_args.new_line_token,
width=training_args.width, height=training_args.height,
block_size=data_args.block_size,
rendered_as_target=data_args.rendered_as_target,
patch_width=training_args.patch_width,
patch_height=training_args.patch_height,
text_mask_rate=data_args.text_mask_rate,
merge_text_masks=data_args.merge_text_masks,
ignore_white_patches=data_args.ignore_white_patches,
add_black_patch=data_args.add_black_patch,
add_prefix=data_args.add_prefix,
autoregressive=data_args.autoregressive,
ar_image_block_size=data_args.ar_image_block_size,
total_block_size=data_args.total_block_size,
context_mask=data_args.context_mask,
image_mode=data_args.image_mode,
sample_mask_at_collator=data_args.sample_mask_at_collator,
mask_ratio=model_args.mask_ratio,
span_masking=model_args.span_masking,
max_span_length=model_args.max_span_length,
)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=processor,
# Data collator will default to DataCollatorWithPadding, so we change it.
data_collator=collator,
compute_metrics=None,
preprocess_logits_for_metrics=preprocess_logits_for_metrics
if training_args.do_eval and not is_torch_tpu_available()
else None,
)
trainer = trainer_addon(trainer, streaming_dataset=data_args.streaming_dataset)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
try:
perplexity = math.exp(metrics["eval_loss"])
except OverflowError:
perplexity = float("inf")
metrics["perplexity"] = perplexity
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
if data_args.dataset_name is not None:
kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:
kwargs["dataset_args"] = data_args.dataset_config_name
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
else:
kwargs["dataset"] = data_args.dataset_name
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()