forked from fri-datascience/course_pou
-
Notifications
You must be signed in to change notification settings - Fork 0
/
09-alternative_representations.Rmd
253 lines (223 loc) · 10.1 KB
/
09-alternative_representations.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Alternative representation of distributions {#ard}
This chapter deals with alternative representation of distributions.
The students are expected to acquire the following knowledge:
**Theoretical**
- Probability generating functions.
- Moment generating functions.
<style>
.fold-btn {
float: right;
margin: 5px 5px 0 0;
}
.fold {
border: 1px solid black;
min-height: 40px;
}
</style>
<script type="text/javascript">
$(document).ready(function() {
$folds = $(".fold");
$folds.wrapInner("<div class=\"fold-blck\">"); // wrap a div container around content
$folds.prepend("<button class=\"fold-btn\">Unfold</button>"); // add a button
$(".fold-blck").toggle(); // fold all blocks
$(".fold-btn").on("click", function() { // add onClick event
$(this).text($(this).text() === "Fold" ? "Unfold" : "Fold"); // if the text equals "Fold", change it to "Unfold"or else to "Fold"
$(this).next(".fold-blck").toggle("linear"); // "swing" is the default easing function. This can be further customized in its speed or the overall animation itself.
})
});
</script>
```{r, echo = FALSE, warning = FALSE, message = FALSE}
togs <- T
library(ggplot2)
library(dplyr)
library(reshape2)
library(tidyr)
# togs <- FALSE
```
## Probability generating functions (PGFs)
```{exercise, label = poissum}
Show that the sum of independent Poisson random variables is itself a Poisson random variable. <span style="color:blue">R: Let $X$ be a sum of three Poisson distributions with $\lambda_i \in \{2, 5.2, 10\}$. Take 1000 samples and plot the three distributions and the sum. Then take 1000 samples from the theoretical distribution of $X$ and compare them to the sum.</span>
```
<div class="fold">
```{solution, echo = togs}
Let $X_i \sim \text{Poisson}(\lambda_i)$ for $i = 1,...,n$, and let $X = \sum_{i=1}^n X_i$.
\begin{align}
\alpha_X(t) &= \prod_{i=1}^n \alpha_{X_i}(t) \\
&= \prod_{i=1}^n \bigg( \sum_{j=0}^\infty t^j \frac{\lambda_i^j e^{-\lambda_i}}{j!} \bigg) \\
&= \prod_{i=1}^n \bigg( e^{-\lambda_i} \sum_{j=0}^\infty \frac{(t\lambda_i)^j }{j!} \bigg) \\
&= \prod_{i=1}^n \bigg( e^{-\lambda_i} e^{t \lambda_i} \bigg) & \text{power series} \\
&= \prod_{i=1}^n \bigg( e^{\lambda_i(t - 1)} \bigg) \\
&= e^{\sum_{i=1}^n \lambda_i(t - 1)} \\
&= e^{t \sum_{i=1}^n \lambda_i - \sum_{i=1}^n \lambda_i} \\
&= e^{-\sum_{i=1}^n \lambda_i} \sum_{j=0}^\infty \frac{(t \sum_{i=1}^n \lambda_i)^j}{j!}\\
&= \sum_{j=0}^\infty \frac{e^{-\sum_{i=1}^n \lambda_i} (t \sum_{i=1}^n \lambda_i)^j}{j!}\\
\end{align}
The last term is the PGF of a Poisson random variable with parameter $\sum_{i=1}^n \lambda_i$. Because the PGF is unique, $X$ is a Poisson random variable.
```
```{r, echo = togs, message = FALSE, warning=FALSE, eval = togs}
set.seed(1)
library(tidyr)
nsamps <- 1000
samps <- matrix(data = NA, nrow = nsamps, ncol = 4)
samps[ ,1] <- rpois(nsamps, 2)
samps[ ,2] <- rpois(nsamps, 5.2)
samps[ ,3] <- rpois(nsamps, 10)
samps[ ,4] <- samps[ ,1] + samps[ ,2] + samps[ ,3]
colnames(samps) <- c(2, 2.5, 10, "sum")
gsamps <- as_tibble(samps)
gsamps <- gather(gsamps, key = "dist", value = "value")
ggplot(gsamps, aes(x = value)) +
geom_bar() +
facet_wrap(~ dist)
samps <- cbind(samps, "theoretical" = rpois(nsamps, 2 + 5.2 + 10))
gsamps <- as_tibble(samps[ ,4:5])
gsamps <- gather(gsamps, key = "dist", value = "value")
ggplot(gsamps, aes(x = value, fill = dist)) +
geom_bar(position = "dodge")
```
</div>
```{exercise, label = nbev}
Find the expected value and variance of the negative binomial distribution. Hint: Find the Taylor series of $(1 - y)^{-r}$ at point 0.
```
<div class="fold">
```{solution, echo = togs}
Let $X \sim \text{NB}(r, p)$.
\begin{align}
\alpha_X(t) &= E[t^X] \\
&= \sum_{j=0}^\infty t^j \binom{j + r - 1}{j} (1 - p)^r p^j \\
&= (1 - p)^r \sum_{j=0}^\infty \binom{j + r - 1}{j} (tp)^j \\
&= (1 - p)^r \sum_{j=0}^\infty \frac{(j + r - 1)(j + r - 2)...r}{j!} (tp)^j. \\
\end{align}
Let us look at the Taylor series of $(1 - y)^{-r}$ at 0
\begin{align}
(1 - y)^{-r} = &1 + \frac{-r(-1)}{1!}y + \frac{-r(-r - 1)(-1)^2}{2!}y^2 + \\
&\frac{-r(-r - 1)(-r - 2)(-1)^3}{3!}y^3 + ... \\
\end{align}
How does the $k$-th term look like? We have $k$ derivatives of our function so
\begin{align}
\frac{d^k}{d^k y} (1 - y)^{-r} &= \frac{-r(-r - 1)...(-r - k + 1)(-1)^k}{k!}y^k \\
&= \frac{r(r + 1)...(r + k - 1)}{k!}y^k.
\end{align}
We observe that this equals to the $j$-th term in the sum of NB PGF. Therefore
\begin{align}
\alpha_X(t) &= (1 - p)^r (1 - tp)^{-r} \\
&= \Big(\frac{1 - p}{1 - tp}\Big)^r
\end{align}
To find the expected value, we need to differentiate
\begin{align}
\frac{d}{dt} \Big(\frac{1 - p}{1 - tp}\Big)^r &= r \Big(\frac{1 - p}{1 - tp}\Big)^{r-1} \frac{d}{dt} \frac{1 - p}{1 - tp} \\
&= r \Big(\frac{1 - p}{1 - tp}\Big)^{r-1} \frac{p(1 - p)}{(1 - tp)^2}. \\
\end{align}
Evaluating this at 1, we get:
\begin{align}
E[X] = \frac{rp}{1 - p}.
\end{align}
For the variance we need the second derivative.
\begin{align}
\frac{d^2}{d^2t} \Big(\frac{1 - p}{1 - tp}\Big)^r &= \frac{p^2 r (r + 1) (\frac{1 - p}{1 - tp})^r}{(tp - 1)^2}
\end{align}
Evaluating this at 1 and inserting the first derivatives, we get:
\begin{align}
Var[X] &= \frac{d^2}{dt^2} \alpha_X(1) + \frac{d}{dt}\alpha_X(1) - \Big(\frac{d}{dt}\alpha_X(t) \Big)^2 \\
&= \frac{p^2 r (r + 1)}{(1 - p)^2} + \frac{rp}{1 - p} - \frac{r^2p^2}{(1 - p)^2} \\
&= \frac{rp}{(1 - p)^2}.
\end{align}
```
```{r, echo = togs, message = FALSE, warning=FALSE, eval = togs}
library(tidyr)
set.seed(1)
nsamps <- 100000
find_p <- function (mu, r) {
return (10 / (r + 10))
}
r <- c(1,2,10,20)
p <- find_p(10, r)
sigma <- rep(sqrt(p*r / (1 - p)^2), each = nsamps)
samps <- cbind("r=1" = rnbinom(nsamps, size = r[1], prob = 1 - p[1]),
"r=2" = rnbinom(nsamps, size = r[2], prob = 1 - p[2]),
"r=4" = rnbinom(nsamps, size = r[3], prob = 1 - p[3]),
"r=20" = rnbinom(nsamps, size = r[4], prob = 1 - p[4]))
gsamps <- gather(as.data.frame(samps))
iw <- (gsamps$value > sigma + 10) | (gsamps$value < sigma - 10)
ggplot(gsamps, aes(x = value, fill = iw)) +
geom_bar() +
# geom_density() +
facet_wrap(~ key)
```
</div>
## Moment generating functions (MGFs)
```{exercise, label = geovar}
Find the variance of the geometric distribution.
```
<div class="fold">
```{solution, echo = togs}
Let $X \sim \text{Geometric}(p)$. The MGF of the geometric distribution is
\begin{align}
M_X(t) &= E[e^{tX}] \\
&= \sum_{k=0}^\infty p(1 - p)^k e^{tk} \\
&= p \sum_{k=0}^\infty ((1 - p)e^t)^k.
\end{align}
Let us assume that $(1 - p)e^t < 1$. Then, by using the geometric series we get
\begin{align}
M_X(t) &= \frac{p}{1 - e^t + pe^t}.
\end{align}
The first derivative of the above expression is
\begin{align}
\frac{d}{dt}M_X(t) &= \frac{-p(-e^t + pe^t)}{(1 - e^t + pe^t)^2},
\end{align}
and evaluating at $t = 0$, we get $\frac{1 - p}{p}$, which we already recognize as the expected value of the geometric distribution.
The second derivative is
\begin{align}
\frac{d^2}{dt^2}M_X(t) &= \frac{(p-1)pe^t((p-1)e^t - 1)}{((p - 1)e^t + 1)^3},
\end{align}
and evaluating at $t = 0$, we get $\frac{(p - 1)(p - 2)}{p^2}$. Combining we get the variance
\begin{align}
Var(X) &= \frac{(p - 1)(p - 2)}{p^2} - \frac{(1 - p)^2}{p^2} \\
&= \frac{(p-1)(p-2) - (1-p)^2}{p^2} \\
&= \frac{1 - p}{p^2}.
\end{align}
```
</div>
```{exercise, label = nsumev}
Find the distribution of sum of two normal random variables $X$ and $Y$, by comparing $M_{X+Y}(t)$ to $M_X(t)$. <span style="color:blue">R: To illustrate the result draw random samples from N$(-3, 1)$ and N$(5, 1.2)$ and calculate the empirical mean and variance of $X+Y$. Plot all three histograms in one plot. </span>
```
<div class="fold">
```{solution, echo = togs}
Let $X \sim \text{N}(\mu_X, 1)$ and $Y \sim \text{N}(\mu_Y, 1)$. The MGF of the sum is
\begin{align}
M_{X+Y}(t) &= M_X(t) M_Y(t).
\end{align}
Let us calculate $M_X(t)$, the MGF for $Y$ then follows analogously.
\begin{align}
M_X(t) &= \int_{-\infty}^\infty e^{tx} \frac{1}{\sqrt{2 \pi \sigma_X^2}} e^{-\frac{(x - mu_X)^2}{2\sigma_X^2}} dx \\
&= \int_{-\infty}^\infty \frac{1}{\sqrt{2 \pi \sigma_X^2}} e^{-\frac{(x - mu_X)^2 - 2\sigma_X tx}{2\sigma_X^2}} dx \\
&= \int_{-\infty}^\infty \frac{1}{\sqrt{2 \pi \sigma_X^2}} e^{-\frac{x^2 - 2\mu_X x + \mu_X^2 - 2\sigma_X tx}{2\sigma_X^2}} dx \\
&= \int_{-\infty}^\infty \frac{1}{\sqrt{2 \pi \sigma_X^2}} e^{-\frac{(x - (\mu_X + \sigma_X^2 t))^2 + \mu_X^2 - (\mu_X + \sigma_X^2 t)^2}{2\sigma_X^2}} dx & \text{complete the square}\\
&= e^{-\frac{\mu_X^2 - (\mu_X + \sigma_X^2 t)^2}{2\sigma_X^2}} \int_{-\infty}^\infty \frac{1}{\sqrt{2 \pi \sigma_X^2}} e^{-\frac{(x - (\mu_X + \sigma_X^2 t))^2}{2\sigma_X^2}} dx & \\
&= e^{-\frac{\mu_X^2 - (\mu_X + \sigma_X^2 t)^2}{2\sigma_X^2}} & \text{normal PDF} \\
&= e^{-\frac{\mu_X^2 - \mu_X^2 - \mu_X \sigma_X^2 t - 2 \sigma_X^4 t^2}{2\sigma_X^2}} \\
&= e^{\sigma_X^2 t^2 + \frac{\mu_X t}{2}}. \\
\end{align}
The MGF of the sum is then
\begin{align}
M_{X+Y}(t) &= e^{\sigma_X^2 t^2 + 0.5\mu_X t} e^{\sigma_Y^2 t^2 + 0.5\mu_Y t} \\
&= e^{t^2(\sigma_X^2 + \sigma_Y^2) + 0.5 t(\mu_X + \mu_Y)}.
\end{align}
By comparing $M_{X+Y}(t)$ and $M_X(t)$ we observe that both have two terms. The first is $2t^2$ multiplied by the variance, and the second is $2t$ multiplied by the mean. Since MGFs are unique, we conclude that $Z = X + Y \sim \text{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$.
```
```{r, echo = togs, message = FALSE, warning=FALSE, eval = togs}
library(tidyr)
library(ggplot2)
set.seed(1)
nsamps <- 1000
x <- rnorm(nsamps, -3, 1)
y <- rnorm(nsamps, 5, 1.2)
z <- x + y
mean(z)
var(z)
df <- data.frame(x = x, y = y, z = z) %>%
gather()
ggplot(df, aes(x = value, fill = key)) +
geom_histogram(position = "dodge")
```
</div>