forked from fri-datascience/course_pou
-
Notifications
You must be signed in to change notification settings - Fork 0
/
08-multivariate_random_variables_OLD.Rmd
536 lines (432 loc) · 17.5 KB
/
08-multivariate_random_variables_OLD.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
# Multivariate random variables {#mrv}
This chapter deals with multivariate random variables.
The students are expected to acquire the following knowledge:
**Theoretical**
- Multinomial distribution.
- Multivariate normal distribution.
- Cholesky decomposition.
- Eigendecomposition.
**R**
- Sampling from the multinomial distribution.
- Sampling from the multivariate normal distribution.
- Matrix decompositions.
<style>
.fold-btn {
float: right;
margin: 5px 5px 0 0;
}
.fold {
border: 1px solid black;
min-height: 40px;
}
</style>
<script type="text/javascript">
$(document).ready(function() {
$folds = $(".fold");
$folds.wrapInner("<div class=\"fold-blck\">"); // wrap a div container around content
$folds.prepend("<button class=\"fold-btn\">Unfold</button>"); // add a button
$(".fold-blck").toggle(); // fold all blocks
$(".fold-btn").on("click", function() { // add onClick event
$(this).text($(this).text() === "Fold" ? "Unfold" : "Fold"); // if the text equals "Fold", change it to "Unfold"or else to "Fold"
$(this).next(".fold-blck").toggle("linear"); // "swing" is the default easing function. This can be further customized in its speed or the overall animation itself.
})
});
</script>
```{r, echo = FALSE, warning = FALSE, message = FALSE}
togs <- T
library(ggplot2)
library(dplyr)
library(reshape2)
library(tidyr)
# togs <- FALSE
```
## Multinomial random variables
```{exercise, label = mnompdf}
Let $X_i$, $i = 1,...,k$ represent $k$ events, and $p_i$ the probabilities
of these events happening in a trial. Let $n$ be the number of trials, and
$X$ a multivariate random variable, the collection of $X_i$.
Then $p(x) = \frac{n!}{x_1!x_2!...x_k!} p_1^{x_1} p_2^{x_2}...p_k^{x_k}$
is the PMF of a multinomial distribution, where $n = \sum_{i = 1}^k x_i$.
a. Show that the marginal distribution of $X_i$ is a binomial distribution.
b. Take 1000 samples from the multinomial distribution with $n=4$ and
probabilities $p = (0.2, 0.2, 0.5, 0.1)$. Then take 1000 samples from
four binomial distributions with the same parameters. Inspect the results
visually.
```
<div class="fold">
```{solution, echo = togs}
a. We will approach this proof from the probabilistic point of view.
W.L.O.G. let $x_1$ be the marginal distribution we are interested in.
The term $p^{x_1}$ denotes the probability that event 1 happened $x_1$ times.
For this event not to happen, one of the other events needs to happen. So
for each of the remaining trials, the probability of another event is
$\sum_{i=2}^k p_i = 1 - p_1$, and there were $n - x_1$ such trials.
What is left to do is to calculate the number of permutations of event 1
happening and event 1 not happening. We choose $x_1$ trials, from $n$ trials.
Therefore $p(x_1) = \binom{n}{x_1} p_1^{x_1} (1 - p_1)^{n - x_1}$, which is
the binomial PMF. Interested students are encouraged to prove this
mathematically.
```
```{r, echo = togs, message = FALSE, warning=FALSE, eval = togs}
set.seed(1)
nsamps <- 1000
samps_mult <- rmultinom(nsamps, 4, prob = c(0.2, 0.2, 0.5, 0.1))
samps_mult <- as_tibble(t(samps_mult)) %>%
gather()
samps <- tibble(
V1 = rbinom(nsamps, 4, 0.2),
V2 = rbinom(nsamps, 4, 0.2),
V3 = rbinom(nsamps, 4, 0.5),
V4 = rbinom(nsamps, 4, 0.1)
) %>%
gather() %>%
bind_rows(samps_mult) %>%
bind_cols("dist" = c(rep("binomial", 4*nsamps), rep("multinomial", 4*nsamps)))
ggplot(samps, aes(x = value, fill = dist)) +
geom_bar(position = "dodge") +
facet_wrap(~ key)
```
</div>
```{exercise, name = "Multinomial expected value", label = mnomev}
Find the expected value, variance and covariance of the multinomial distribution. Hint: First find the expected value for $n = 1$ and then use the fact that the trials are independent.
```
<div class="fold">
```{solution, echo = togs}
Let us first calculate the expected value of $X_1$, when $n = 1$.
\begin{align}
E[X_1] &= \sum_{n_1 = 0}^1 \sum_{n_2 = 0}^1 ... \sum_{n_k = 0}^1 \frac{1}{n_1!n_2!...n_k!}p_1^{n_1}p_2^{n_2}...p_k^{n_k}n_1 \\
&= \sum_{n_1 = 0}^1 \frac{p_1^{n_1} n_1}{n_1!} \sum_{n_2 = 0}^1 ... \sum_{n_k = 0}^1 \frac{1}{n_2!...n_k!}p_2^{n_2}...p_k^{n_k}
\end{align}
When $n_1 = 0$ then the whole terms is zero, so we do not need to evaluate other sums. When $n_1 = 1$, all other $n_i$ must be zero, as we have $1 = \sum_{i=1}^k n_i$. Therefore the other sums equal $1$. So $E[X_1] = p_1$ and $E[X_i] = p_i$ for $i = 1,...,k$.
Now let $Y_j$, $j = 1,...,n$, have a multinomial distribution with $n = 1$, and let $X$ have a multinomial distribution with and arbitrary $n$. Then we can write $X = \sum_{j=1}^n Y_j$. And due to independence
\begin{align}
E[X] &= E[\sum_{j=1}^n Y_j] \\
&= \sum_{j=1}^n E[Y_j] \\
&= np.
\end{align}
For the variance, we need $E[X^2]$. Let us follow the same procedure as above and first calculate $E[X_i]$ for $n = 1$. The only thing that changes is that the term $n_i$ becomes $n_i^2$. Since we only have $0$ and $1$ this does not change the outcome. So
\begin{align}
Var[X_i] &= E[X_i^2] - E[X_i]^2\\
&= p_i(1 - p_i).
\end{align}
Analogous to above for arbitrary $n$
\begin{align}
Var[X] &= E[X^2] - E[X]^2 \\
&= \sum_{j=1}^n E[Y_j^2] - \sum_{j=1}^n E[Y_j]^2 \\
&= \sum_{j=1}^n E[Y_j^2] - E[Y_j]^2 \\
&= \sum_{j=1}^n p(1-p) \\
&= np(1-p).
\end{align}
To calculate the covariance, we need $E[X_i X_j]$. Again, let us start with $n = 1$. Without loss of generality, let us assume $i = 1$ and $j = 2$.
\begin{align}
E[X_1 X_2] = \sum_{n_1 = 0}^1 \sum_{n_2 = 0}^1 \frac{p_1^{n_1} n_1}{n_1!} \frac{p_2^{n_2} n_2}{n_2!} \sum_{n_3 = 0}^1 ... \sum_{n_k = 0}^1 \frac{1}{n_3!...n_k!}p_3^{n_3}...p_k^{n_k}.
\end{align}
In the above expression, at each iteration we multiply with $n_1$ and $n_2$. Since $n = 1$, one of these always has to be zero. Therefore $E[X_1 X_2] = 0$ and
\begin{align}
Cov(X_i, X_j) &= E[X_i X_j] - E[X_i]E[X_j] \\
&= - p_i p_j.
\end{align}
For arbitrary $n$, let $X = \sum_{t = 1}^n Y_t$ be the sum of independent multinomial random variables $Y_t = [X_{1t}, X_{2t},...,X_{kt}]^T$ with $n=1$. Then $X_1 = \sum_{t = 1}^n X_{1t}$ and $X_2 = \sum_{l = 1}^n X_{2l}$.
\begin{align}
Cov(X_1, X_2) &= E[X_1 X_2] - E[X_1] E[X_2] \\
&= E[\sum_{t = 1}^n X_{1t} \sum_{l = 1}^n X_{2l}] - n^2 p_1 p_2 \\
&= \sum_{t = 1}^n \sum_{l = 1}^n E[X_{1t} X_{2l}] - n^2 p_1 p_2.
\end{align}
For $X_{1t}$ and $X_{2l}$ the expected value is zero when $t = l$. When $t \neq l$ then they are independent, so the expected value is the product $p_1 p_2$. There are $n^2$ total terms, and for $n$ of them $t = l$ holds. So $E[X_1 X_2] = (n^2 - n) p_1 p_2$. Inserting into the above
\begin{align}
Cov(X_1, X_2) &= (n^2 - n) p_1 p_2 - n^2 p_1 p_2 \\
&= - n p_1 p_2.
\end{align}
```
</div>
## Multivariate normal random variables
```{exercise, name = "Cholesky decomposition", label = mvnchol}
Let $X$ be a random vector of length $k$ with $X_i \sim \text{N}(0, 1)$ and $LL^*$ the Cholesky decomposition of a Hermitian positive-definite matrix $A$. Let $\mu$ be a vector of length $k$.
a. Find the distribution of the random vector $Y = \mu + L X$.
b. Find the Cholesky decomposition of $A =
\begin{bmatrix}
2 & 1.2 \\
1.2 & 1
\end{bmatrix}$.
c. <span style="color:blue">R: Use the results from a) and b) to sample from the MVN distribution $\text{N}(\mu, A)$, where $\mu = [1.5, -1]^T$. Plot a scatterplot and compare it to direct samples from the multivariate normal distribution (_rmvnorm_). </span>
<!-- d. <span style="color:blue">R: $L$ is a linear map$. Plot 10 points from $X$ and 10 points from the transformation $L X$ (Hint: use color or shapes). Compare and discuss the results.</span> -->
```
<div class="fold">
```{solution, echo = togs}
a. $X$ has an independent normal distribution of dimension $k$. Then
\begin{align}
Y = \mu + L X &\sim \text{N}(\mu, LL^T) \\
&\sim \text{N}(\mu, A).
\end{align}
b. Solve
\begin{align}
\begin{bmatrix}
a & 0 \\
b & c
\end{bmatrix}
\begin{bmatrix}
a & b \\
0 & c
\end{bmatrix} =
\begin{bmatrix}
2 & 1.2 \\
1.2 & 1
\end{bmatrix}
\end{align}
```
```{r, echo = togs, message = FALSE, warning=FALSE, eval = togs}
# a
set.seed(1)
nsamps <- 1000
X <- matrix(data = rnorm(nsamps * 2), ncol = 2)
mu <- c(1.5, -1)
L <- matrix(data = c(sqrt(2), 0,
1.2 / sqrt(2), sqrt(1 - 1.2^2/2)),
ncol = 2,
byrow = TRUE)
Y <- t(mu + L %*% t(X))
plot_df <- data.frame(rbind(X, Y), c(rep("X", nsamps), rep("Y", nsamps)))
colnames(plot_df) <- c("D1", "D2", "var")
ggplot(data = plot_df, aes(x = D1, y = D2, colour = as.factor(var))) +
geom_point()
```
</div>
```{exercise, name = "Eigendecomposition", label = mvneigen}
<span style="color:blue">R: Let $\Sigma = U \Lambda U^T$ be the eigendecomposition of covariance matrix $\Sigma$. Follow the procedure below, to sample from a multivariate normal with $\mu = [-2, 1]^T$ and $\Sigma =
\begin{bmatrix}
0.3, -0.5 \\
-0.5, 1.6
\end{bmatrix}$:</span>
1. <span style="color:blue">Sample from two independent standardized normal distributions to get $X$.</span>
2. <span style="color:blue">Find the eigendecomposition of $X$ (_eigen_).</span>
3. <span style="color:blue">Multiply $X$ by $\Lambda^{\frac{1}{2}}$ to get $X2$. Consider how the eigendecomposition for $X2$ changes compared to $X$. </span>
4. <span style="color:blue">Multiply $X2$ by $U$ to get $X3$. Consider how the eigendecomposition for $X3$ changes compared to $X2$. </span>
5. <span style="color:blue">Add $\mu$ to $X3$. Consider how the eigendecomposition for $X4$ changes compared to $X3$. </span>
6. <span style="color:blue">Plot the data and the eigenvectors (scaled with $\Lambda^{\frac{1}{2}}$) at each step. Hint: Use _geom_segment_ for the eigenvectors. </span>
```
<div class="fold">
```{r, echo = togs, message = FALSE, warning=FALSE, eval = togs}
# a
set.seed(1)
sigma <- matrix(data = c(0.3, -0.5,
-0.5, 1.6),
nrow = 2,
byrow = TRUE)
ed <- eigen(sigma)
e_val <- ed$values
e_vec <- ed$vectors
# b
set.seed(1)
nsamps <- 1000
X <- matrix(data = rnorm(nsamps * 2), ncol = 2)
vec1 <- matrix(c(1,0,0,1), nrow = 2)
X2 <- t(sqrt(diag(e_val)) %*% t(X))
vec2 <- sqrt(diag(e_val)) %*% vec1
X3 <- t(e_vec %*% t(X2))
vec3 <- e_vec %*% vec2
X4 <- t(c(-2, 1) + t(X3))
vec4 <- c(-2, 1) + vec3
vec_mat <- data.frame(matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,-2,1,-2,1), ncol = 2, byrow = TRUE),
t(cbind(vec1, vec2, vec3, vec4)),
c(1,1,2,2,3,3,4,4))
df <- data.frame(rbind(X, X2, X3, X4), c(rep(1, nsamps),
rep(2, nsamps),
rep(3, nsamps),
rep(4, nsamps)))
colnames(df) <- c("D1", "D2", "wh")
colnames(vec_mat) <- c("D1", "D2", "E1", "E2", "wh")
ggplot(data = df, aes(x = D1, y = D2)) +
geom_point() +
geom_segment(data = vec_mat, aes(xend = E1, yend = E2), color = "red") +
facet_wrap(~ wh) +
coord_fixed()
```
</div>
```{exercise, name = "Marginal and conditional distributions", label = mvncond}
Let $X \sim \text{N}(\mu, \Sigma)$, where $\mu = [2, 0, -1]^T$ and $\Sigma =
\begin{bmatrix}
1 & -0.2 & 0.5 \\
-0.2 & 1.4 & -1.2 \\
0.5 & -1.2 & 2 \\
\end{bmatrix}$. Let $A$ represent the first two random variables and $B$ the third random variable. <span style="color:blue">R: For the calculation in the following points, you can use R.</span>
a. Find the marginal distribution of $B$.
b. Find the conditional distribution of $B | A$.
c. Find the marginal distribution of $A$.
d. Find the conditional distribution of $A | B$.
e. <span style="color:blue">R: Visually compare the distributions of a) and b), and c) and d) at three different conditional values.</span>
```
<div class="fold">
```{r, echo = togs, message = FALSE, warning=FALSE, eval = togs}
mu <- c(2, 0, -1)
Sigma <- matrix(c(1, -0.2, 0.5,
-0.2, 1.4, -1.2,
0.5, -1.2, 2),
nrow = 3,
byrow = TRUE)
mu_A <- c(2, 0)
mu_B <- -1
Sigma_A <- Sigma[1:2, 1:2]
Sigma_B <- Sigma[3, 3]
Sigma_AB <- Sigma[1:2, 3]
# b
tmp_b <- t(Sigma_AB) %*% solve(Sigma_A)
mu_b <- mu_B - tmp_b %*% mu_A
Sigma_b <- Sigma_B - t(Sigma_AB) %*% solve(Sigma_A) %*% Sigma_AB
mu_b
tmp_b
Sigma_b
# d
tmp_a <- Sigma_AB * (1 / Sigma_B)
mu_a <- mu_A - tmp_a * mu_B
Sigma_d <- Sigma_A - (Sigma_AB * (1 / Sigma_B)) %*% t(Sigma_AB)
mu_a
tmp_a
Sigma_d
```
```{solution, echo = togs}
a. $B \sim \text{N}(-1, 2)$.
b. $B | A = a \sim \text{N}(-1.68 + [0.34, -0.81] a, 0.86)$.
c. $\mu_A = [2, 0, -1]^T$ and $\Sigma_A =
\begin{bmatrix}
1 & -0.2 & \\
-0.2 & 1.4 \\
\end{bmatrix}$.
d.
\begin{align}
X_A | X_B = b &\sim \text{N}(\mu_t, \Sigma_t), \\
\mu_t &= [2.25, -0.6]^T + [0.25, -0.6]^T b, \\
\Sigma_t &=
\begin{bmatrix}
0.875 & 0.1 \\
0.1 & 0.68 \\
\end{bmatrix}
\end{align}
```
```{r, echo = togs, message = FALSE, warning=FALSE, eval = togs}
library(mvtnorm)
set.seed(1)
nsamps <- 1000
# a and b
samps <- as.data.frame(matrix(data = NA, nrow = 4 * nsamps, ncol = 2))
samps[1:nsamps,1] <- rnorm(nsamps, mu_B, Sigma_B)
samps[1:nsamps,2] <- "marginal"
for (i in 1:3) {
a <- rmvnorm(1, mu_A, Sigma_A)
samps[(i*nsamps + 1):((i + 1) * nsamps), 1] <- rnorm(nsamps,
mu_b + tmp_b %*% t(a),
Sigma_b)
samps[(i*nsamps + 1):((i + 1) * nsamps), 2] <- paste0(# "cond",
round(a, digits = 2),
collapse = "-")
}
colnames(samps) <- c("x", "dist")
ggplot(samps, aes(x = x)) +
geom_density() +
facet_wrap(~ dist)
# c and d
samps <- as.data.frame(matrix(data = NA, nrow = 4 * nsamps, ncol = 3))
samps[1:nsamps,1:2] <- rmvnorm(nsamps, mu_A, Sigma_A)
samps[1:nsamps,3] <- "marginal"
for (i in 1:3) {
b <- rnorm(1, mu_B, Sigma_B)
samps[(i*nsamps + 1):((i + 1) * nsamps), 1:2] <- rmvnorm(nsamps,
mu_a + tmp_a * b,
Sigma_d)
samps[(i*nsamps + 1):((i + 1) * nsamps), 3] <- b
}
colnames(samps) <- c("x", "y", "dist")
ggplot(samps, aes(x = x, y = y)) +
geom_point() +
geom_smooth(method = "lm") +
facet_wrap(~ dist)
```
</div>
## Transformations
```{exercise}
Let $(U,V)$ be a random variable with PDF $p(u,v) = \frac{1}{8 \sqrt{u}}$,
$U \in [0,4]$ and $V \in [-\sqrt{U}, -\sqrt{U} + 1] \cup [\sqrt{U}, \sqrt{U} + 1]$. Let $X = \sqrt{U}$ and
$Y = V - \sqrt{U}$.
a. Find PDF of $(X,Y)$. What can you tell about distributions of $X$ and $Y$?
This exercise shows how we can simplify a probabilistic problem with a
clever use of transformations.
b. <span style="color:blue">R: Take 1000 samples from $(X,Y)$ and transform
them with inverses of the above functions to get samples from $(U,V)$.
Plot both sets of samples.</span>
```
<div class="fold">
```{solution, echo = togs}
a. First we need to find the inverse functions. Since $x = \sqrt{u}$ it
follows that $u = x^2$, and that $x \in [-2,2]$. Similarly
$v = y + x$ and $y \in [0,1]$. Let us first find the Jacobian.
\[\renewcommand\arraystretch{1.6}
J(x,y) =
\begin{bmatrix}
\frac{\partial u}{\partial x} &
\frac{\partial v}{\partial x} \\%[1ex] % <-- 1ex more space between rows of matrix
\frac{\partial u}{\partial y} &
\frac{\partial v}{\partial y}
\end{bmatrix} =
\begin{bmatrix}
2x &
1 \\%[1ex] % <-- 1ex more space between rows of matrix
0 &
1
\end{bmatrix},
\]
and the determinant is $|J(x,y)| = 2x$. Putting everything together, we get
\begin{align}
p_{X,Y}(x,y) = p_{U,V}(x^2, y + x) |J(x,y)| = \frac{1}{8 \sqrt{x^2}} 2x = \frac{1}{4}.
\end{align}
This reminds us of the Uniform distribution. Indeed we can see that
$p_X(x) = \frac{1}{4}$ and $p_Y(y) = 1$. So instead of dealing with an
awkward PDF of $(U,V)$ and the corresponding dynamic bounds, we are now
looking at two independent Uniform random variables. In practice, this could
make modeling much easier.
```
```{r, echo = togs, message = FALSE, warning=FALSE, eval = togs}
set.seed(1)
nsamps <- 2000
x <- runif(nsamps, min = -2, max = 2)
y <- runif(nsamps)
orig <- tibble(x = x, y = y, vrs = "original")
u <- x^2
v <- y + x
transf <- tibble(x = u, y = v, vrs = "transformed")
df <- bind_rows(orig, transf)
ggplot(df, aes(x = x, y = y, color = vrs)) +
geom_point(alpha = 0.3)
```
</div>
```{exercise}
<span style="color:blue">R: Write a function that will calculate the probability density of an arbitraty multivariate normal distribution, based on independent standardized normal PDFs. Compare with _dmvnorm_ from the __mvtnorm__ package.</span>
```
<div class="fold">
```{r, echo = togs, message = FALSE, warning=FALSE, eval = togs}
library(mvtnorm)
set.seed(1)
mvn_dens <- function (y, mu, Sigma) {
L <- chol(Sigma)
L_inv <- solve(t(L))
g_inv <- L_inv %*% t(y - mu)
J <- L_inv
J_det <- det(J)
return(prod(dnorm(g_inv)) * J_det)
}
mu_v <- c(-2, 0, 1)
cov_m <- matrix(c(1, -0.2, 0.5,
-0.2, 2, 0.3,
0.5, 0.3, 1.6),
ncol = 3,
byrow = TRUE)
n_comp <- 20
for (i in 1:n_comp) {
x <- rmvnorm(1,
mean = mu_v,
sigma = cov_m)
print(paste0("My function: ",
mvn_dens(x, mu_v, cov_m),
", dmvnorm: ",
dmvnorm(x, mu_v, cov_m)))
}
```
</div>