-
Notifications
You must be signed in to change notification settings - Fork 0
/
neo4j_gae.conf
771 lines (610 loc) · 36.4 KB
/
neo4j_gae.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
#*****************************************************************
# Neo4j configuration
#
# For more details and a complete list of settings, please see
# https://neo4j.com/docs/operations-manual/current/reference/configuration-settings/
#*****************************************************************
# The name of the database to mount
#dbms.active_database=graph.db
dbms.security.procedures.unrestricted="apoc.*,algo.*"
# Paths of directories in the installation.
dbms.directories.data=/var/lib/neo4j/data
dbms.directories.plugins=/var/lib/neo4j/plugins
dbms.directories.certificates=/var/lib/neo4j/certificates
dbms.directories.logs=/var/log/neo4j
dbms.directories.lib=/usr/share/neo4j/lib
dbms.directories.run=/var/run/neo4j
dbms.directories.metrics=/var/lib/neo4j/metrics
# This setting constrains all `LOAD CSV` import files to be under the `import` directory. Remove or comment it out to
# allow files to be loaded from anywhere in the filesystem; this introduces possible security problems. See the
# `LOAD CSV` section of the manual for details.
dbms.directories.import=/var/lib/neo4j/import
# Whether requests to Neo4j are authenticated.
dbms.security.auth_enabled=true
# Enable this to be able to upgrade a store from an older version.
#dbms.allow_upgrade=true
# Java Heap Size: by default the Java heap size is dynamically
# calculated based on available system resources.
# Uncomment these lines to set specific initial and maximum
# heap size.
#dbms.memory.heap.initial_size=512m
#dbms.memory.heap.max_size=512m
# The amount of memory to use for mapping the store files, in bytes (or
# kilobytes with the 'k' suffix, megabytes with 'm' and gigabytes with 'g').
# If Neo4j is running on a dedicated server, then it is generally recommended
# to leave about 2-4 gigabytes for the operating system, give the JVM enough
# heap to hold all your transaction state and query context, and then leave the
# rest for the page cache.
# The default page cache memory assumes the machine is dedicated to running
# Neo4j, and is heuristically set to 50% of RAM minus the max Java heap size.
#dbms.memory.pagecache.size=10g
# Enable online backups to be taken from this database.
dbms.backup.enabled=true
# By default the backup service will only listen on localhost.
# To enable remote backups you will have to bind to an external
# network interface (e.g. 0.0.0.0 for all interfaces).
dbms.backup.address=localhost:6362
#*****************************************************************
# Network connector configuration
#*****************************************************************
# With default configuration Neo4j only accepts local connections.
# To accept non-local connections, uncomment this line:
dbms.connectors.default_listen_address=0.0.0.0
# You can also choose a specific network interface, and configure a non-default
# port for each connector, by setting their individual listen_address.
# The address at which this server can be reached by its clients. This may be the server's IP address or DNS name, or
# it may be the address of a reverse proxy which sits in front of the server. This setting may be overridden for
# individual connectors below.
dbms.connectors.default_advertised_address=35.198.228.47
# You can also choose a specific advertised hostname or IP address, and
# configure an advertised port for each connector, by setting their
# individual advertised_address.
# Bolt connector
dbms.connector.bolt.enabled=true
dbms.connector.bolt.tls_level=REQUIRED
dbms.connector.bolt.listen_address=0.0.0.0:7400
# HTTP Connector. There must be exactly one HTTP connector.
dbms.connector.http.enabled=true
dbms.connector.http.listen_address=0.0.0.0:7401
# HTTPS Connector. There can be zero or one HTTPS connectors.
dbms.connector.https.enabled=true
dbms.connector.https.listen_address=0.0.0.0:7402
# Number of Neo4j worker threads.
#dbms.threads.worker_count=
#*****************************************************************
# SSL system configuration
#*****************************************************************
# Names of the SSL policies to be used for the respective components.
# The legacy policy is a special policy which is not defined in
# the policy configuration section, but rather derives from
# dbms.directories.certificates and associated files
# (by default: neo4j.key and neo4j.cert). Its use will be deprecated.
# The policies to be used for connectors.
#
# N.B: Note that a connector must be configured to support/require
# SSL/TLS for the policy to actually be utilized.
#
# see: dbms.connector.*.tls_level
#bolt.ssl_policy=legacy
#https.ssl_policy=legacy
# For a causal cluster the configuring of a policy mandates its use.
#causal_clustering.ssl_policy=
#*****************************************************************
# SSL policy configuration
#*****************************************************************
# Each policy is configured under a separate namespace, e.g.
# dbms.ssl.policy.<policyname>.*
#
# The example settings below are for a new policy named 'default'.
# The base directory for cryptographic objects. Each policy will by
# default look for its associated objects (keys, certificates, ...)
# under the base directory.
#
# Every such setting can be overriden using a full path to
# the respective object, but every policy will by default look
# for cryptographic objects in its base location.
#
# Mandatory setting
#dbms.ssl.policy.default.base_directory=certificates/default
# Allows the generation of a fresh private key and a self-signed
# certificate if none are found in the expected locations. It is
# recommended to turn this off again after keys have been generated.
#
# Keys should in general be generated and distributed offline
# by a trusted certificate authority (CA) and not by utilizing
# this mode.
#dbms.ssl.policy.default.allow_key_generation=false
# Enabling this makes it so that this policy ignores the contents
# of the trusted_dir and simply resorts to trusting everything.
#
# Use of this mode is discouraged. It would offer encryption but no security.
#dbms.ssl.policy.default.trust_all=false
# The private key for the default SSL policy. By default a file
# named private.key is expected under the base directory of the policy.
# It is mandatory that a key can be found or generated.
#dbms.ssl.policy.default.private_key=
# The private key for the default SSL policy. By default a file
# named public.crt is expected under the base directory of the policy.
# It is mandatory that a certificate can be found or generated.
#dbms.ssl.policy.default.public_certificate=
# The certificates of trusted parties. By default a directory named
# 'trusted' is expected under the base directory of the policy. It is
# mandatory to create the directory so that it exists, because it cannot
# be auto-created (for security purposes).
#
# To enforce client authentication client_auth must be set to 'require'!
#dbms.ssl.policy.default.trusted_dir=
# Certificate Revocation Lists (CRLs). By default a directory named
# 'revoked' is expected under the base directory of the policy. It is
# mandatory to create the directory so that it exists, because it cannot
# be auto-created (for security purposes).
#dbms.ssl.policy.default.revoked_dir=
# Client authentication setting. Values: none, optional, require
# The default is to require client authentication.
#
# Servers are always authenticated unless explicitly overridden
# using the trust_all setting. In a mutual authentication setup this
# should be kept at the default of require and trusted certificates
# must be installed in the trusted_dir.
#dbms.ssl.policy.default.client_auth=require
# A comma-separated list of allowed TLS versions.
# By default TLSv1, TLSv1.1 and TLSv1.2 are allowed.
#dbms.ssl.policy.default.tls_versions=
# A comma-separated list of allowed ciphers.
# The default ciphers are the defaults of the JVM platform.
#dbms.ssl.policy.default.ciphers=
#*****************************************************************
# Logging configuration
#*****************************************************************
# To enable HTTP logging, uncomment this line
dbms.logs.http.enabled=false
# Number of HTTP logs to keep.
#dbms.logs.http.rotation.keep_number=5
# Size of each HTTP log that is kept.
#dbms.logs.http.rotation.size=20m
# To enable GC Logging, uncomment this line
dbms.logs.gc.enabled=false
# GC Logging Options
# see http://docs.oracle.com/cd/E19957-01/819-0084-10/pt_tuningjava.html#wp57013 for more information.
#dbms.logs.gc.options=-XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCApplicationStoppedTime -XX:+PrintPromotionFailure -XX:+PrintTenuringDistribution
# Number of GC logs to keep.
#dbms.logs.gc.rotation.keep_number=5
# Size of each GC log that is kept.
#dbms.logs.gc.rotation.size=20m
# Size threshold for rotation of the debug log. If set to zero then no rotation will occur. Accepts a binary suffix "k",
# "m" or "g".
#dbms.logs.debug.rotation.size=20m
# Maximum number of history files for the internal log.
#dbms.logs.debug.rotation.keep_number=7
# Log executed queries that takes longer than the configured threshold. Enable by uncommenting this line.
#dbms.logs.query.enabled=true
# If the execution of query takes more time than this threshold, the query is logged. If set to zero then all queries
# are logged.
#dbms.logs.query.threshold=0
# The file size in bytes at which the query log will auto-rotate. If set to zero then no rotation will occur. Accepts a
# binary suffix "k", "m" or "g".
#dbms.logs.query.rotation.size=20m
# Maximum number of history files for the query log.
#dbms.logs.query.rotation.keep_number=7
# Include parameters for the executed queries being logged (this is enabled by default).
#dbms.logs.query.parameter_logging_enabled=true
# Uncomment this line to include detailed time information for the executed queries being logged:
#dbms.logs.query.time_logging_enabled=true
# Uncomment this line to include bytes allocated by the executed queries being logged:
#dbms.logs.query.allocation_logging_enabled=true
# Uncomment this line to include page hits and page faults information for the executed queries being logged:
#dbms.logs.query.page_logging_enabled=true
# The security log is always enabled when `dbms.security.auth_enabled=true`, and resides in `logs/security.log`.
# Log level for the security log. One of DEBUG, INFO, WARN and ERROR.
dbms.logs.security.level=INFO
# Threshold for rotation of the security log.
#dbms.logs.security.rotation.size=20m
# Minimum time interval after last rotation of the security log before it may be rotated again.
#dbms.logs.security.rotation.delay=300s
# Maximum number of history files for the security log.
#dbms.logs.security.rotation.keep_number=7
#*****************************************************************
# Causal Clustering Configuration
#*****************************************************************
# Uncomment and specify these lines for running Neo4j in Causal Clustering mode.
# See the Causal Clustering documentation at https://neo4j.com/docs/ for details.
# Database mode
# Allowed values:
# CORE - Core member of the cluster, part of the consensus quorum.
# READ_REPLICA - Read replica in the cluster, an eventually-consistent read-only instance of the database.
# To operate this Neo4j instance in Causal Clustering mode as a core member, uncomment this line:
dbms.mode=SINGLE
# Cluster formation size settings
# https://neo4j.com/docs/operations-manual/current/reference/configuration-settings/#config_causal_clustering.minimum_core_cluster_size_at_runtime
causal_clustering.minimum_core_cluster_size_at_runtime=3
causal_clustering.minimum_core_cluster_size_at_formation=3
# A comma-separated list of the address and port for which to reach all other members of the cluster. It must be in the
# host:port format. For each machine in the cluster, the address will usually be the public ip address of that machine.
# The port will be the value used in the setting "causal_clustering.discovery_listen_address".
causal_clustering.initial_discovery_members=node1:5000
# Host and port to bind the cluster member discovery management communication.
# This is the setting to add to the collection of address in causal_clustering.initial_core_cluster_members.
# Use 0.0.0.0 to bind to any network interface on the machine. If you want to only use a specific interface
# (such as a private ip address on AWS, for example) then use that ip address instead.
# If you don't know what value to use here, use this machines ip address.
causal_clustering.discovery_listen_address=0.0.0.0:5000
# Network interface and port for the transaction shipping server to listen on. If you want to allow for
# messages to be read from
# any network on this machine, us 0.0.0.0. If you want to constrain communication to a specific network address
# (such as a private ip on AWS, for example) then use that ip address instead.
# If you don't know what value to use here, use this machines ip address.
# causal_clustering.transaction_listen_address=0.0.0.0:6000
causal_clustering.discovery_type=LIST
# Network interface and port for the RAFT server to listen on. If you want to allow for messages to be read from
# any network on this machine, us 0.0.0.0. If you want to constrain communication to a specific network address
# (such as a private ip on AWS, for example) then use that ip address instead.
# If you don't know what value to use here, use this machines ip address.
# causal_clustering.raft_listen_address=0.0.0.0:7000
# List a set of names for groups to which this server should belong. This
# is a comma-separated list and names should only use alphanumericals
# and underscore. This can be used to identify groups of servers in the
# configuration for load balancing and replication policies.
#
# The main intention for this is to group servers, but it is possible to specify
# a unique identifier here as well which might be useful for troubleshooting
# or other special purposes.
#causal_clustering.server_groups=
#*****************************************************************
# Causal Clustering Load Balancing
#*****************************************************************
# N.B: Read the online documentation for a thorough explanation!
# Selects the load balancing plugin that shall be enabled.
#causal_clustering.load_balancing.plugin=server_policies
####### Examples for "server_policies" plugin #######
# Will select all available servers as the default policy, which is the
# policy used when the client does not specify a policy preference. The
# default configuration for the default policy is all().
#causal_clustering.load_balancing.config.server_policies.default=all()
# Will select servers in groups 'group1' or 'group2' under the default policy.
#causal_clustering.load_balancing.config.server_policies.default=groups(group1,group2)
# Slightly more advanced example:
# Will select servers in 'group1', 'group2' or 'group3', but only if there are at least 2.
# This policy will be exposed under the name of 'mypolicy'.
#causal_clustering.load_balancing.config.server_policies.mypolicy=groups(group1,group2,group3) -> min(2)
# Below will create an even more advanced policy named 'regionA' consisting of several rules
# yielding the following behaviour:
#
# select servers in regionA, if at least 2 are available
# otherwise: select servers in regionA and regionB, if at least 2 are available
# otherwise: select all servers
#
# The intention is to create a policy for a particular region which prefers
# a certain set of local servers, but which will fallback to other regions
# or all available servers as required.
#
# N.B: The following configuration uses the line-continuation character \
# which allows you to construct an easily readable rule set spanning
# several lines.
#
#causal_clustering.load_balancing.config.server_policies.policyA=\
#groups(regionA) -> min(2);\
#groups(regionA,regionB) -> min(2);
# Note that implicitly the last fallback is to always consider all() servers,
# but this can be prevented by specifying a halt() as the last rule.
#
#causal_clustering.load_balancing.config.server_policies.regionA_only=\
#groups(regionA);\
#halt();
#*****************************************************************
# Causal Clustering Additional Configuration Options
#*****************************************************************
# The following settings are used less frequently.
# If you don't know what these are, you don't need to change these from their default values.
# Address and port that this machine advertises that it's RAFT server is listening at. Should be a
# specific network address. If you are unsure about what value to use here, use this machine's ip address.
causal_clustering.raft_advertised_address=10.148.0.3:7000
# Address and port that this machine advertises that it's transaction shipping server is listening at. Should be a
# specific network address. If you are unsure about what value to use here, use this machine's ip address.
causal_clustering.transaction_advertised_address=10.148.0.3:6000
# The time limit within which a new leader election will occur if no messages from the current leader are received.
# Larger values allow for more stable leaders at the expense of longer unavailability times in case of leader
# failures.
# causal_clustering.leader_election_timeout=7s
# The time limit allowed for a new member to attempt to update its data to match the rest of the cluster.
#causal_clustering.join_catch_up_timeout=10m
# The size of the batch for streaming entries to other machines while trying to catch up another machine.
#causal_clustering.catchup_batch_size=64
# When to pause sending entries to other machines and allow them to catch up.
#causal_clustering.log_shipping_max_lag=256
# Raft log pruning frequncy.
#causal_clustering.raft_log_pruning_frequency=10m
# The size to allow the raft log to grow before rotating.
#causal_clustering.raft_log_rotation_size=250M
### The following setting is relevant for Edge servers only.
# The interval of pulling updates from Core servers.
#causal_clustering.pull_interval=1s
# For how long should drivers cache the discovery data from
# the dbms.cluster.routing.getServers() procedure. Defaults to 300s.
#causal_clustering.cluster_routing_ttl=300s
#*****************************************************************
# HA configuration
#*****************************************************************
# Uncomment and specify these lines for running Neo4j in High Availability mode.
# See the High Availability documentation at https://neo4j.com/docs/ for details.
# Database mode
# Allowed values:
# HA - High Availability
# SINGLE - Single mode, default.
# To run in High Availability mode uncomment this line:
#dbms.mode=HA
# ha.server_id is the number of each instance in the HA cluster. It should be
# an integer (e.g. 1), and should be unique for each cluster instance.
#ha.server_id=
# ha.initial_hosts is a comma-separated list (without spaces) of the host:port
# where the ha.host.coordination of all instances will be listening. Typically
# this will be the same for all cluster instances.
#ha.initial_hosts=127.0.0.1:5001,127.0.0.1:5002,127.0.0.1:5003
# IP and port for this instance to listen on, for communicating cluster status
# information with other instances (also see ha.initial_hosts). The IP
# must be the configured IP address for one of the local interfaces.
#ha.host.coordination=127.0.0.1:5001
# IP and port for this instance to listen on, for communicating transaction
# data with other instances (also see ha.initial_hosts). The IP
# must be the configured IP address for one of the local interfaces.
#ha.host.data=127.0.0.1:6001
# The interval, in seconds, at which slaves will pull updates from the master. You must comment out
# the option to disable periodic pulling of updates.
ha.pull_interval=10
# Amount of slaves the master will try to push a transaction to upon commit
# (default is 1). The master will optimistically continue and not fail the
# transaction even if it fails to reach the push factor. Setting this to 0 will
# increase write performance when writing through master but could potentially
# lead to branched data (or loss of transaction) if the master goes down.
#ha.tx_push_factor=1
# Strategy the master will use when pushing data to slaves (if the push factor
# is greater than 0). There are three options available "fixed_ascending" (default),
# "fixed_descending" or "round_robin". Fixed strategies will start by pushing to
# slaves ordered by server id (accordingly with qualifier) and are useful when
# planning for a stable fail-over based on ids.
#ha.tx_push_strategy=fixed_ascending
# Policy for how to handle branched data.
#ha.branched_data_policy=keep_all
# How often heartbeat messages should be sent. Defaults to ha.default_timeout.
#ha.heartbeat_interval=5s
# How long to wait for heartbeats from other instances before marking them as suspects for failure.
# This value reflects considerations of network latency, expected duration of garbage collection pauses
# and other factors that can delay message sending and processing. Larger values will result in more
# stable masters but also will result in longer waits before a failover in case of master failure.
# This value should not be set to less than twice the ha.heartbeat_interval value otherwise there is a high
# risk of frequent master switches and possibly branched data occurrence.
#ha.heartbeat_timeout=40s
# If you are using a load-balancer that doesn't support HTTP Auth, you may need to turn off authentication for the
# HA HTTP status endpoint by uncommenting the following line.
#dbms.security.ha_status_auth_enabled=false
# Whether this instance should only participate as slave in cluster. If set to
# true, it will never be elected as master.
#ha.slave_only=false
#********************************************************************
# Security Configuration
#********************************************************************
# The authentication and authorization provider that contains both users and roles.
# This can be one of the built-in `native` or `ldap` auth providers,
# or it can be an externally provided plugin, with a custom name prefixed by `plugin`,
# i.e. `plugin-<AUTH_PROVIDER_NAME>`.
#dbms.security.auth_provider=native
# The time to live (TTL) for cached authentication and authorization info when using
# external auth providers (LDAP or plugin). Setting the TTL to 0 will
# disable auth caching.
#dbms.security.auth_cache_ttl=10m
# The maximum capacity for authentication and authorization caches (respectively).
#dbms.security.auth_cache_max_capacity=10000
# Set to log successful authentication events to the security log.
# If this is set to `false` only failed authentication events will be logged, which
# could be useful if you find that the successful events spam the logs too much,
# and you do not require full auditing capability.
#dbms.security.log_successful_authentication=true
#================================================
# LDAP Auth Provider Configuration
#================================================
# URL of LDAP server to use for authentication and authorization.
# The format of the setting is `<protocol>://<hostname>:<port>`, where hostname is the only required field.
# The supported values for protocol are `ldap` (default) and `ldaps`.
# The default port for `ldap` is 389 and for `ldaps` 636.
# For example: `ldaps://ldap.example.com:10389`.
#
# NOTE: You may want to consider using STARTTLS (`dbms.security.ldap.use_starttls`) instead of LDAPS
# for secure connections, in which case the correct protocol is `ldap`.
#dbms.security.ldap.host=localhost
# Use secure communication with the LDAP server using opportunistic TLS.
# First an initial insecure connection will be made with the LDAP server, and then a STARTTLS command
# will be issued to negotiate an upgrade of the connection to TLS before initiating authentication.
#dbms.security.ldap.use_starttls=false
# The LDAP referral behavior when creating a connection. This is one of `follow`, `ignore` or `throw`.
# `follow` automatically follows any referrals
# `ignore` ignores any referrals
# `throw` throws an exception, which will lead to authentication failure
#dbms.security.ldap.referral=follow
# The timeout for establishing an LDAP connection. If a connection with the LDAP server cannot be
# established within the given time the attempt is aborted.
# A value of 0 means to use the network protocol's (i.e., TCP's) timeout value.
#dbms.security.ldap.connection_timeout=30s
# The timeout for an LDAP read request (i.e. search). If the LDAP server does not respond within
# the given time the request will be aborted. A value of 0 means wait for a response indefinitely.
#dbms.security.ldap.read_timeout=30s
#----------------------------------
# LDAP Authentication Configuration
#----------------------------------
# LDAP authentication mechanism. This is one of `simple` or a SASL mechanism supported by JNDI,
# for example `DIGEST-MD5`. `simple` is basic username
# and password authentication and SASL is used for more advanced mechanisms. See RFC 2251 LDAPv3
# documentation for more details.
#dbms.security.ldap.authentication.mechanism=simple
# LDAP user DN template. An LDAP object is referenced by its distinguished name (DN), and a user DN is
# an LDAP fully-qualified unique user identifier. This setting is used to generate an LDAP DN that
# conforms with the LDAP directory's schema from the user principal that is submitted with the
# authentication token when logging in.
# The special token {0} is a placeholder where the user principal will be substituted into the DN string.
#dbms.security.ldap.authentication.user_dn_template=uid={0},ou=users,dc=example,dc=com
# Determines if the result of authentication via the LDAP server should be cached or not.
# Caching is used to limit the number of LDAP requests that have to be made over the network
# for users that have already been authenticated successfully. A user can be authenticated against
# an existing cache entry (instead of via an LDAP server) as long as it is alive
# (see `dbms.security.auth_cache_ttl`).
# An important consequence of setting this to `true` is that
# Neo4j then needs to cache a hashed version of the credentials in order to perform credentials
# matching. This hashing is done using a cryptographic hash function together with a random salt.
# Preferably a conscious decision should be made if this method is considered acceptable by
# the security standards of the organization in which this Neo4j instance is deployed.
#dbms.security.ldap.authentication.cache_enabled=true
#----------------------------------
# LDAP Authorization Configuration
#----------------------------------
# Authorization is performed by searching the directory for the groups that
# the user is a member of, and then map those groups to Neo4j roles.
# Perform LDAP search for authorization info using a system account instead of the user's own account.
#
# If this is set to `false` (default), the search for group membership will be performed
# directly after authentication using the LDAP context bound with the user's own account.
# The mapped roles will be cached for the duration of `dbms.security.auth_cache_ttl`,
# and then expire, requiring re-authentication. To avoid frequently having to re-authenticate
# sessions you may want to set a relatively long auth cache expiration time together with this option.
# NOTE: This option will only work if the users are permitted to search for their
# own group membership attributes in the directory.
#
# If this is set to `true`, the search will be performed using a special system account user
# with read access to all the users in the directory.
# You need to specify the username and password using the settings
# `dbms.security.ldap.authorization.system_username` and
# `dbms.security.ldap.authorization.system_password` with this option.
# Note that this account only needs read access to the relevant parts of the LDAP directory
# and does not need to have access rights to Neo4j, or any other systems.
#dbms.security.ldap.authorization.use_system_account=false
# An LDAP system account username to use for authorization searches when
# `dbms.security.ldap.authorization.use_system_account` is `true`.
# Note that the `dbms.security.ldap.authentication.user_dn_template` will not be applied to this username,
# so you may have to specify a full DN.
#dbms.security.ldap.authorization.system_username=
# An LDAP system account password to use for authorization searches when
# `dbms.security.ldap.authorization.use_system_account` is `true`.
#dbms.security.ldap.authorization.system_password=
# The name of the base object or named context to search for user objects when LDAP authorization is enabled.
# A common case is that this matches the last part of `dbms.security.ldap.authentication.user_dn_template`.
#dbms.security.ldap.authorization.user_search_base=ou=users,dc=example,dc=com
# The LDAP search filter to search for a user principal when LDAP authorization is
# enabled. The filter should contain the placeholder token {0} which will be substituted for the
# user principal.
#dbms.security.ldap.authorization.user_search_filter=(&(objectClass=*)(uid={0}))
# A list of attribute names on a user object that contains groups to be used for mapping to roles
# when LDAP authorization is enabled.
#dbms.security.ldap.authorization.group_membership_attributes=memberOf
# An authorization mapping from LDAP group names to Neo4j role names.
# The map should be formatted as a semicolon separated list of key-value pairs, where the
# key is the LDAP group name and the value is a comma separated list of corresponding role names.
# For example: group1=role1;group2=role2;group3=role3,role4,role5
#
# You could also use whitespaces and quotes around group names to make this mapping more readable,
# for example: dbms.security.ldap.authorization.group_to_role_mapping=\
# "cn=Neo4j Read Only,cn=users,dc=example,dc=com" = reader; \
# "cn=Neo4j Read-Write,cn=users,dc=example,dc=com" = publisher; \
# "cn=Neo4j Schema Manager,cn=users,dc=example,dc=com" = architect; \
# "cn=Neo4j Administrator,cn=users,dc=example,dc=com" = admin
#dbms.security.ldap.authorization.group_to_role_mapping=
#*****************************************************************
# Miscellaneous configuration
#*****************************************************************
# Enable this to specify a parser other than the default one.
#cypher.default_language_version=3.0
# Determines if Cypher will allow using file URLs when loading data using
# `LOAD CSV`. Setting this value to `false` will cause Neo4j to fail `LOAD CSV`
# clauses that load data from the file system.
dbms.security.allow_csv_import_from_file_urls=true
# Retention policy for transaction logs needed to perform recovery and backups.
#dbms.tx_log.rotation.retention_policy=7 days
# Limit the number of IOs the background checkpoint process will consume per second.
# This setting is advisory, is ignored in Neo4j Community Edition, and is followed to
# best effort in Enterprise Edition.
# An IO is in this case a 8 KiB (mostly sequential) write. Limiting the write IO in
# this way will leave more bandwidth in the IO subsystem to service random-read IOs,
# which is important for the response time of queries when the database cannot fit
# entirely in memory. The only drawback of this setting is that longer checkpoint times
# may lead to slightly longer recovery times in case of a database or system crash.
# A lower number means lower IO pressure, and consequently longer checkpoint times.
# The configuration can also be commented out to remove the limitation entirely, and
# let the checkpointer flush data as fast as the hardware will go.
# Set this to -1 to disable the IOPS limit.
# dbms.checkpoint.iops.limit=300
# Enable a remote shell server which Neo4j Shell clients can log in to.
#dbms.shell.enabled=true
# The network interface IP the shell will listen on (use 0.0.0.0 for all interfaces).
#dbms.shell.host=127.0.0.1
# The port the shell will listen on, default is 1337.
#dbms.shell.port=1337
# Only allow read operations from this Neo4j instance. This mode still requires
# write access to the directory for lock purposes.
#dbms.read_only=false
# Comma separated list of JAX-RS packages containing JAX-RS resources, one
# package name for each mountpoint. The listed package names will be loaded
# under the mountpoints specified. Uncomment this line to mount the
# org.neo4j.examples.server.unmanaged.HelloWorldResource.java from
# neo4j-server-examples under /examples/unmanaged, resulting in a final URL of
# http://localhost:7474/examples/unmanaged/helloworld/{nodeId}
#dbms.unmanaged_extension_classes=org.neo4j.examples.server.unmanaged=/examples/unmanaged
# Specified comma separated list of id types (like node or relationship) that should be reused.
# When some type is specified database will try to reuse corresponding ids as soon as it will be safe to do so.
# Currently only 'node' and 'relationship' types are supported.
# This settings is ignored in Neo4j Community Edition.
#dbms.ids.reuse.types.override=node,relationship
#********************************************************************
# JVM Parameters
#********************************************************************
# G1GC generally strikes a good balance between throughput and tail
# latency, without too much tuning.
dbms.jvm.additional=-XX:+UseG1GC
# Have common exceptions keep producing stack traces, so they can be
# debugged regardless of how often logs are rotated.
dbms.jvm.additional=-XX:-OmitStackTraceInFastThrow
# Make sure that `initmemory` is not only allocated, but committed to
# the process, before starting the database. This reduces memory
# fragmentation, increasing the effectiveness of transparent huge
# pages. It also reduces the possibility of seeing performance drop
# due to heap-growing GC events, where a decrease in available page
# cache leads to an increase in mean IO response time.
# Try reducing the heap memory, if this flag degrades performance.
dbms.jvm.additional=-XX:+AlwaysPreTouch
# Trust that non-static final fields are really final.
# This allows more optimizations and improves overall performance.
# NOTE: Disable this if you use embedded mode, or have extensions or dependencies that may use reflection or
# serialization to change the value of final fields!
dbms.jvm.additional=-XX:+UnlockExperimentalVMOptions
dbms.jvm.additional=-XX:+TrustFinalNonStaticFields
# Disable explicit garbage collection, which is occasionally invoked by the JDK itself.
dbms.jvm.additional=-XX:+DisableExplicitGC
# Remote JMX monitoring, uncomment and adjust the following lines as needed. Absolute paths to jmx.access and
# jmx.password files are required.
# Also make sure to update the jmx.access and jmx.password files with appropriate permission roles and passwords,
# the shipped configuration contains only a read only role called 'monitor' with password 'Neo4j'.
# For more details, see: http://download.oracle.com/javase/8/docs/technotes/guides/management/agent.html
# On Unix based systems the jmx.password file needs to be owned by the user that will run the server,
# and have permissions set to 0600.
# For details on setting these file permissions on Windows see:
# http://docs.oracle.com/javase/8/docs/technotes/guides/management/security-windows.html
#dbms.jvm.additional=-Dcom.sun.management.jmxremote.port=3637
#dbms.jvm.additional=-Dcom.sun.management.jmxremote.authenticate=true
#dbms.jvm.additional=-Dcom.sun.management.jmxremote.ssl=false
#dbms.jvm.additional=-Dcom.sun.management.jmxremote.password.file=/absolute/path/to/conf/jmx.password
#dbms.jvm.additional=-Dcom.sun.management.jmxremote.access.file=/absolute/path/to/conf/jmx.access
# Some systems cannot discover host name automatically, and need this line configured:
#dbms.jvm.additional=-Djava.rmi.server.hostname=
# Expand Diffie Hellman (DH) key size from default 1024 to 2048 for DH-RSA cipher suites used in server TLS handshakes.
# This is to protect the server from any potential passive eavesdropping.
dbms.jvm.additional=-Djdk.tls.ephemeralDHKeySize=2048
# This mitigates a DDoS vector.
dbms.jvm.additional=-Djdk.tls.rejectClientInitiatedRenegotiation=true
#********************************************************************
# Wrapper Windows NT/2000/XP Service Properties
#********************************************************************
# WARNING - Do not modify any of these properties when an application
# using this configuration file has been installed as a service.
# Please uninstall the service before modifying this section. The
# service can then be reinstalled.
# Name of the service
dbms.windows_service_name=neo4j
#********************************************************************
# Other Neo4j system properties
#********************************************************************
dbms.jvm.additional=-Dunsupported.dbms.udc.source=gcloud-SINGLE