forked from SurajRKU/SE_PROJECT_GRP_12
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
180 lines (144 loc) · 7.96 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import numpy as np
import pandas as pd
from flask import Flask, render_template, request
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
import json
import bs4 as bs
import urllib.request
import pickle
import requests
from datetime import date, datetime
# Loading the trained machine learning models (nlp_model.pkl and tranform.pkl) using pickle.load and tfidf vectorizer from disk for sentiment anlalysis of the movie reviews
filename = 'nlp_model.pkl'
clf = pickle.load(open(filename, 'rb'))
vectorizer = pickle.load(open('tranform.pkl','rb'))
# Below functions are defined to convert strings to lists, generate a TF-IDF matrix, and get movie suggestions from a CSV file (main_data.csv)
def convert_to_list(my_list):
my_list = my_list.split('","')
my_list[0] = my_list[0].replace('["','')
my_list[-1] = my_list[-1].replace('"]','')
return my_list
# convert list of numbers to list (eg. "[1,2,3]" to [1,2,3])
def convert_to_list_num(my_list):
my_list = my_list.split(',')
my_list[0] = my_list[0].replace("[","")
my_list[-1] = my_list[-1].replace("]","")
return my_list
def generate_tfidf_matrix(metadata):
# Create a TF-IDF Vectorizer Object and exclude common English stop words like 'the' and 'a'
tfidf = TfidfVectorizer(stop_words="english")
# Replace NaN with an empty string
metadata["overview"] = metadata["overview"].fillna("")
# Construct the required TF-IDF matrix by fitting and transforming the data
tfidf_matrix = tfidf.fit_transform(metadata["overview"])
cosine_similarity = linear_kernel(tfidf_matrix, tfidf_matrix)
np.savez("cosine_similarity_10k", matrix=cosine_similarity)
def get_suggestions():
data = pd.read_csv('main_data.csv')
return list(data['movie_title'].str.capitalize())
#Flask routes are set up for different endpoints:
#a)Home renders an HTML template (home.html) with movie suggestions.
#b)populate-matches handles AJAX requests and returns movie recommendations.
#c)recommend processes user inputs, fetches movie data, and reviews from IMDb, and renders a recommendation page (recommend.html) with movie details and reviews along with sentiments.
app = Flask(__name__)
@app.route("/")
@app.route("/home")
def home():
suggestions = get_suggestions()
return render_template('home.html',suggestions=suggestions)
@app.route("/populate-matches",methods=["POST"])
def populate_matches():
# getting data from AJAX request
res = json.loads(request.get_data("data"));
movies_list = res['movies_list'];
movie_cards = {"https://image.tmdb.org/t/p/original"+movies_list[i]['poster_path'] if movies_list[i]['poster_path'] else "/static/movie_placeholder.jpeg": [movies_list[i]['title'],movies_list[i]['original_title'],movies_list[i]['vote_average'],datetime.strptime(movies_list[i]['release_date'], '%Y-%m-%d').year if movies_list[i]['release_date'] else "N/A", movies_list[i]['id']] for i in range(len(movies_list))}
return render_template('recommend.html',movie_cards=movie_cards);
@app.route("/recommend",methods=["POST"])
def recommend():
# getting data from AJAX request
title = request.form['title']
cast_ids = request.form['cast_ids']
cast_names = request.form['cast_names']
cast_chars = request.form['cast_chars']
cast_bdays = request.form['cast_bdays']
cast_bios = request.form['cast_bios']
cast_places = request.form['cast_places']
cast_profiles = request.form['cast_profiles']
imdb_id = request.form['imdb_id']
poster = request.form['poster']
genres = request.form['genres']
overview = request.form['overview']
vote_average = request.form['rating']
vote_count = request.form['vote_count']
rel_date = request.form['rel_date']
release_date = request.form['release_date']
runtime = request.form['runtime']
status = request.form['status']
rec_movies = request.form['rec_movies']
rec_posters = request.form['rec_posters']
rec_movies_org = request.form['rec_movies_org']
rec_year = request.form['rec_year']
rec_vote = request.form['rec_vote']
rec_ids = request.form['rec_ids']
# get movie suggestions for auto complete
suggestions = get_suggestions()
# call the convert_to_list function for every string that needs to be converted to list
rec_movies_org = convert_to_list(rec_movies_org)
rec_movies = convert_to_list(rec_movies)
rec_posters = convert_to_list(rec_posters)
cast_names = convert_to_list(cast_names)
cast_chars = convert_to_list(cast_chars)
cast_profiles = convert_to_list(cast_profiles)
cast_bdays = convert_to_list(cast_bdays)
cast_bios = convert_to_list(cast_bios)
cast_places = convert_to_list(cast_places)
# convert string to list (eg. "[1,2,3]" to [1,2,3])
cast_ids = convert_to_list_num(cast_ids)
rec_vote = convert_to_list_num(rec_vote)
rec_year = convert_to_list_num(rec_year)
rec_ids = convert_to_list_num(rec_ids)
# rendering the string to python string
for i in range(len(cast_bios)):
cast_bios[i] = cast_bios[i].replace(r'\n', '\n').replace(r'\"','\"')
for i in range(len(cast_chars)):
cast_chars[i] = cast_chars[i].replace(r'\n', '\n').replace(r'\"','\"')
# combining multiple lists as a dictionary which can be passed to the html file so that it can be processed easily and the order of information will be preserved
movie_cards = {rec_posters[i]: [rec_movies[i],rec_movies_org[i],rec_vote[i],rec_year[i],rec_ids[i]] for i in range(len(rec_posters))}
casts = {cast_names[i]:[cast_ids[i], cast_chars[i], cast_profiles[i]] for i in range(len(cast_profiles))}
cast_details = {cast_names[i]:[cast_ids[i], cast_profiles[i], cast_bdays[i], cast_places[i], cast_bios[i]] for i in range(len(cast_places))}
if(imdb_id != ""):
# web scraping to get user reviews from IMDB site
sauce = urllib.request.urlopen('https://www.imdb.com/title/{}/reviews?ref_=tt_ov_rt'.format(imdb_id)).read()
soup = bs.BeautifulSoup(sauce,'lxml')
soup_result = soup.find_all("div",{"class":"text show-more__control"})
reviews_list = [] # list of reviews
reviews_status = [] # list of comments (good or bad)
for reviews in soup_result:
if reviews.string:
reviews_list.append(reviews.string)
# passing the review to our model
movie_review_list = np.array([reviews.string])
movie_vector = vectorizer.transform(movie_review_list)
pred = clf.predict(movie_vector)
reviews_status.append('Positive' if pred else 'Negative')
# getting current date
movie_rel_date = ""
curr_date = ""
if(rel_date):
today = str(date.today())
curr_date = datetime.strptime(today,'%Y-%m-%d')
movie_rel_date = datetime.strptime(rel_date, '%Y-%m-%d')
# combining reviews and comments into a dictionary
movie_reviews = {reviews_list[i]: reviews_status[i] for i in range(len(reviews_list))}
# passing all the data to the html file
return render_template('recommend.html',title=title,poster=poster,overview=overview,vote_average=vote_average,
vote_count=vote_count,release_date=release_date,movie_rel_date=movie_rel_date,curr_date=curr_date,runtime=runtime,status=status,genres=genres,movie_cards=movie_cards,reviews=movie_reviews,casts=casts,cast_details=cast_details)
else:
return render_template('recommend.html',title=title,poster=poster,overview=overview,vote_average=vote_average,
vote_count=vote_count,release_date=release_date,movie_rel_date="",curr_date="",runtime=runtime,status=status,genres=genres,movie_cards=movie_cards,reviews="",casts=casts,cast_details=cast_details)
#generate_tfidf_matrix(metadata)
if __name__ == '__main__':
app.run(debug=True)