-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathspectralGating.py
265 lines (210 loc) · 7.69 KB
/
spectralGating.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#!/usr/bin/env python
# coding: utf-8
# In[47]:
import IPython
from scipy.io import wavfile
import scipy.signal
import numpy as np
import matplotlib.pyplot as plt
import librosa
get_ipython().run_line_magic('matplotlib', 'inline')
# In[52]:
#LOADdata
wav_loc = 'C:/Users/Admin/Downloads/carnaticclean.wav'
rate, data = wavfile.read(wav_loc)
data = data/1024
print(data)
# In[53]:
def fftnoise(f):
f = np.array(f, dtype="complex")
Np = (len(f) - 1) // 2
phases = np.random.rand(Np) * 2 * np.pi
phases = np.cos(phases) + 1j * np.sin(phases)
f[1 : Np + 1] *= phases
f[-1 : -1 - Np : -1] = np.conj(f[1 : Np + 1])
return np.fft.ifft(f).real
def band_limited_noise(min_freq, max_freq, samples=1024, samplerate=1):
freqs = np.abs(np.fft.fftfreq(samples, 1 / samplerate))
f = np.zeros(samples)
f[np.logical_and(freqs >= min_freq, freqs <= max_freq)] = 1
return fftnoise(f)
# In[54]:
IPython.display.Audio(data=data, rate=rate)
# In[55]:
fig, ax = plt.subplots(figsize=(20,4))
ax.plot(data)
# In[56]:
#ADD NOISE
noise_len = 11 # seconds
noise = band_limited_noise(min_freq=4000, max_freq = 12000, samples=len(data), samplerate=rate)*10000
noise_clip = noise[:rate*noise_len]
audio_clip_band_limited = data+noise
fig, ax = plt.subplots(figsize=(20,4))
ax.plot(audio_clip_band_limited)
IPython.display.Audio(data=audio_clip_band_limited, rate=rate)
# In[57]:
#DENOISE
import time
from datetime import timedelta as td
def _stft(y, n_fft, hop_length, win_length):
return librosa.stft(y=y, n_fft=n_fft, hop_length=hop_length, win_length=win_length)
def _istft(y, hop_length, win_length):
return librosa.istft(y, hop_length, win_length)
def _amp_to_db(x):
return librosa.core.amplitude_to_db(x, ref=1.0, amin=1e-20, top_db=80.0)
def _db_to_amp(x,):
return librosa.core.db_to_amplitude(x, ref=1.0)
def plot_spectrogram(signal, title):
fig, ax = plt.subplots(figsize=(20, 4))
cax = ax.matshow(
signal,
origin="lower",
aspect="auto",
cmap=plt.cm.seismic,
vmin=-1 * np.max(np.abs(signal)),
vmax=np.max(np.abs(signal)),
)
fig.colorbar(cax)
ax.set_title(title)
plt.tight_layout()
plt.show()
def plot_statistics_and_filter(
mean_freq_noise, std_freq_noise, noise_thresh, smoothing_filter
):
fig, ax = plt.subplots(ncols=2, figsize=(20, 4))
plt_mean, = ax[0].plot(mean_freq_noise, label="Mean power of noise")
plt_std, = ax[0].plot(std_freq_noise, label="Std. power of noise")
plt_std, = ax[0].plot(noise_thresh, label="Noise threshold (by frequency)")
ax[0].set_title("Threshold for mask")
ax[0].legend()
cax = ax[1].matshow(smoothing_filter, origin="lower")
fig.colorbar(cax)
ax[1].set_title("Filter for smoothing Mask")
plt.show()
def removeNoise(
audio_clip,
noise_clip,
n_grad_freq=2,
n_grad_time=4,
n_fft=2048,
win_length=2048,
hop_length=512,
n_std_thresh=1.5,
prop_decrease=1.0,
verbose=False,
visual=False,
):
"""Remove noise from audio based upon a clip containing only noise
Args:
audio_clip (array): The first parameter.
noise_clip (array): The second parameter.
n_grad_freq (int): how many frequency channels to smooth over with the mask.
n_grad_time (int): how many time channels to smooth over with the mask.
n_fft (int): number audio of frames between STFT columns.
win_length (int): Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`..
hop_length (int):number audio of frames between STFT columns.
n_std_thresh (int): how many standard deviations louder than the mean dB of the noise (at each frequency level) to be considered signal
prop_decrease (float): To what extent should you decrease noise (1 = all, 0 = none)
visual (bool): Whether to plot the steps of the algorithm
Returns:
array: The recovered signal with noise subtracted
"""
if verbose:
start = time.time()
# STFT over noise
noise_stft = _stft(noise_clip, n_fft, hop_length, win_length)
noise_stft_db = _amp_to_db(np.abs(noise_stft)) # convert to dB
# Calculate statistics over noise
mean_freq_noise = np.mean(noise_stft_db, axis=1)
std_freq_noise = np.std(noise_stft_db, axis=1)
noise_thresh = mean_freq_noise + std_freq_noise * n_std_thresh
if verbose:
print("STFT on noise:", td(seconds=time.time() - start))
start = time.time()
# STFT over signal
if verbose:
start = time.time()
sig_stft = _stft(audio_clip, n_fft, hop_length, win_length)
sig_stft_db = _amp_to_db(np.abs(sig_stft))
if verbose:
print("STFT on signal:", td(seconds=time.time() - start))
start = time.time()
# Calculate value to mask dB to
mask_gain_dB = np.min(_amp_to_db(np.abs(sig_stft)))
print(noise_thresh, mask_gain_dB)
# Create a smoothing filter for the mask in time and frequency
smoothing_filter = np.outer(
np.concatenate(
[
np.linspace(0, 1, n_grad_freq + 1, endpoint=False),
np.linspace(1, 0, n_grad_freq + 2),
]
)[1:-1],
np.concatenate(
[
np.linspace(0, 1, n_grad_time + 1, endpoint=False),
np.linspace(1, 0, n_grad_time + 2),
]
)[1:-1],
)
smoothing_filter = smoothing_filter / np.sum(smoothing_filter)
# calculate the threshold for each frequency/time bin
db_thresh = np.repeat(
np.reshape(noise_thresh, [1, len(mean_freq_noise)]),
np.shape(sig_stft_db)[1],
axis=0,
).T
# mask if the signal is above the threshold
sig_mask = sig_stft_db < db_thresh
if verbose:
print("Masking:", td(seconds=time.time() - start))
start = time.time()
# convolve the mask with a smoothing filter
sig_mask = scipy.signal.fftconvolve(sig_mask, smoothing_filter, mode="same")
sig_mask = sig_mask * prop_decrease
if verbose:
print("Mask convolution:", td(seconds=time.time() - start))
start = time.time()
# mask the signal
sig_stft_db_masked = (
sig_stft_db * (1 - sig_mask)
+ np.ones(np.shape(mask_gain_dB)) * mask_gain_dB * sig_mask
) # mask real
sig_imag_masked = np.imag(sig_stft) * (1 - sig_mask)
sig_stft_amp = (_db_to_amp(sig_stft_db_masked) * np.sign(sig_stft)) + (
1j * sig_imag_masked
)
if verbose:
print("Mask application:", td(seconds=time.time() - start))
start = time.time()
# recover the signal
recovered_signal = _istft(sig_stft_amp, hop_length, win_length)
recovered_spec = _amp_to_db(
np.abs(_stft(recovered_signal, n_fft, hop_length, win_length))
)
if verbose:
print("Signal recovery:", td(seconds=time.time() - start))
if visual:
plot_spectrogram(noise_stft_db, title="Noise")
if visual:
plot_statistics_and_filter(
mean_freq_noise, std_freq_noise, noise_thresh, smoothing_filter
)
if visual:
plot_spectrogram(sig_stft_db, title="Signal")
if visual:
plot_spectrogram(sig_mask, title="Mask applied")
if visual:
plot_spectrogram(sig_stft_db_masked, title="Masked signal")
if visual:
plot_spectrogram(recovered_spec, title="Recovered spectrogram")
return recovered_signal
output = removeNoise(audio_clip=audio_clip_band_limited, noise_clip=noise_clip,verbose=True,visual=True)
# In[58]:
fig, ax = plt.subplots(nrows=1,ncols=1, figsize=(20,4))
plt.plot(output, color='black')
ax.set_xlim((0, len(output)))
plt.show()
# play back a sample of the song
IPython.display.Audio(data=output, rate=rate)
# In[ ]: