Skip to content

Latest commit

 

History

History
214 lines (173 loc) · 10.3 KB

README.md

File metadata and controls

214 lines (173 loc) · 10.3 KB

Self Driving Car

This repository is used to emphasize UDACITY self-driving car dataset.

Library dependency

UbuntunVIDIATensorFlowKerasNumPyPandas JupyterPythonFlaskOpenCV

  • tensorflow=2.5.0
  • opencv-python=4.5.2.54
  • numpy=1.19.5
  • sklearn=0.0
  • matplotlib=3.4.2
  • pandas=1.3.0
  • scikit-learn=0.24.2
  • imgaug=0.4.0
  • python-engineio=3.13.2
  • eventlet=0.31.1
  • Pillow=8.3.1
  • Flask=2.0.1
$ pip3 install -r requirements.txt

Model

The CNN Model used here is being proposed by NVIDIA for self-driving Cars

CNN

Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 31, 98, 24)        1824      
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 14, 47, 36)        21636     
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 5, 22, 48)         43248     
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 3, 20, 64)         27712     
_________________________________________________________________
conv2d_4 (Conv2D)            (None, 1, 18, 64)         36928     
_________________________________________________________________
flatten (Flatten)            (None, 1152)              0         
_________________________________________________________________
dense (Dense)                (None, 100)               115300    
_________________________________________________________________
dense_1 (Dense)              (None, 50)                5050      
_________________________________________________________________
dense_2 (Dense)              (None, 10)                510       
_________________________________________________________________
dense_3 (Dense)              (None, 1)                 11        
=================================================================
Total params: 252,219
Trainable params: 252,219
Non-trainable params: 0

Tensorflow Installation (GPU)

System Info

  1. CPU Intel i7
  2. RAM 16GB
  3. NVIDIA 1050 GTX
  4. Ubuntu 20.04

Repository Structure

Self-driving-car
|__ train.ipynb
|__ .gitignore
|__ README.md
|__ LICENSE
|__ Utils
|      |__ utils.py
|      |__ test_gpu.py
|__ dataset
|      |__ driving_log.csv
|      |__ IMG
|_________|__ ....jpg

NVIDIA GPU Installation

# Add NVIDIA package repositories
$ wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin
$ sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600
$ sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
$ sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/ /"
$ sudo apt-get update

$ wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb

$ sudo apt install ./nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
$ sudo apt-get update

$ wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/libnvinfer7_7.1.3-1+cuda11.0_amd64.deb
$ sudo apt install ./libnvinfer7_7.1.3-1+cuda11.0_amd64.deb
$ sudo apt-get update

# Install development and runtime libraries (~4GB)
$ sudo apt-get install --no-install-recommends \
    cuda-11-0 \
    libcudnn8=8.0.4.30-1+cuda11.0  \
    libcudnn8-dev=8.0.4.30-1+cuda11.0

# Reboot. Check that GPUs are visible using the command: nvidia-smi
$ nvidia-smi
# Output Example of nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.42.01    Driver Version: 470.42.01    CUDA Version: 11.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  On   | 00000000:01:00.0 Off |                  N/A |
| N/A   42C    P8    N/A /  N/A |     11MiB /  4042MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A      1268      G   /usr/lib/xorg/Xorg                  4MiB |
|    0   N/A  N/A      1753      G   /usr/lib/xorg/Xorg                  4MiB |
+-----------------------------------------------------------------------------+
# Install TensorRT. Requires that libcudnn8 is installed above.
$ sudo apt-get install -y --no-install-recommends libnvinfer7=7.1.3-1+cuda11.0 \
    libnvinfer-dev=7.1.3-1+cuda11.0 \
    libnvinfer-plugin7=7.1.3-1+cuda11.0
# Add Soft link to libcusolver
$ cd /usr/local/cuda/lib64
$ sudo ln -s $(pwd)/libcusolver.so.10  $(pwd)/libcusolver.so.11
# Set LD_LIBRARY_PATH to ~/.bashrc
$ cd /usr/local/cuda/lib64
$ echo 'export LD_LIBRARY=$(pwd)' >> ~/.bashrc

Pycharm LD_LIBRARY Setup Stackoverflow #33812902

Tensorflow Installation

$ pip3 install tensorflow
$ python3 test_gpu.py
# output:
2021-07-10 20:56:56.563751: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
2021-07-10 20:56:57.336122: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1
2021-07-10 20:56:57.358240: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-07-10 20:56:57.358784: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: 
pciBusID: 0000:01:00.0 name: NVIDIA GeForce GTX 1050 computeCapability: 6.1
coreClock: 1.493GHz coreCount: 5 deviceMemorySize: 3.95GiB deviceMemoryBandwidth: 104.43GiB/s
2021-07-10 20:56:57.358801: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
2021-07-10 20:56:57.360613: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
2021-07-10 20:56:57.360648: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
2021-07-10 20:56:57.361401: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10
2021-07-10 20:56:57.361643: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10
2021-07-10 20:56:57.363797: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11
2021-07-10 20:56:57.364300: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11
2021-07-10 20:56:57.364410: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
2021-07-10 20:56:57.364483: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-07-10 20:56:57.365078: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-07-10 20:56:57.365533: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

Dataset

Used Dataset found on Kaggle Download the dataset and unzip it at the root folder

Training

Use train.ipynb to train the model.

Training

Graph

Complete Training can be followed at: Kaggle/pranjalchanda/udacity-sdc-train

Reference

Tensorflow-GPU

NVIDIA-Research-Paper

Udacity-car-sim