-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathwrapper_video.m
175 lines (153 loc) · 5.97 KB
/
wrapper_video.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
clc;
clear;
close all;
%ob = VideoReader('videos/Mouse.mp4');
ob = VideoReader('videos/sara.mp4');
vidFrames = read(ob);
%numFrames = get(ob, 'numberOfFrames');
numFrames =size(vidFrames,4);
for i = 1: numFrames
temp = vidFrames(:,:,:,i);
temp = rgb2gray(temp);
temp = double(temp);
temp = imresize(temp,0.3);
p=size(temp,1);
d=size(temp,2);
I(:,i)=reshape(temp,[p*d,1]);
end
n_1 = p;
n_2 = d;
r = 20;
q = numFrames ;
MaxIter = 50;
X = I(:, 1 : q);
L = 5 ;
numFrames = q;
alpha_y = 3;
itr_num_pow_mth = 50 ;
Params.itr_num_pow_mth = itr_num_pow_mth;
Params.n_1 = n_1;
Params.n_2 = n_2;
Paramsrwf.n_1 = n_1;
Paramsrwf.n_2 = n_2;
Params.L = L;
Params.alpha_y = alpha_y;
Params.n = n_1 * n_2; % Number of rows of the low rank matrix
Params.q = q; % Number of columns of the matrix for LRPR
Params.r = 10; % Rank
Params.m = n_1*n_2*L; % Number of measurements
Params.tnew = 10; % Total number of main loops of new LRPR
Params.told = 10; % Total number of main loops of Old LRPR
Params.m_b = Params.m; %Number of measuremnets for coefficient estimate
Params.m_u = Params.m; % Number of measuremnets for subspace estimate
Params.m_init = Params.m; % Number of measuremnets for init of subspace
%m_init = 50;
% TWF Parameters
Paramsrwf.m = Params.m;% Number of measurements
Paramsrwf.n = Params.n;% size of columns of coefficient matrix or x_k
Paramsrwf.r = Params.r;% size of columns of coefficient matrix or b_k
Paramsrwf.npower_iter = 100;% Number of loops for initialization of TWF with power method
Paramsrwf.mu = 0.2;% Parameter for gradient
%Params.Tb_LRPRnew = unique(ceil(linspace(30, 80, Params.tnew)));% Number of loops for b_k with simple PR
Params.Tb_LRPRnew = 60 * ones(1, Params.tnew);
% Paramsrwf.Tb_LRPRnew = 85;% Number of loops for b_k with simple PR
Paramsrwf.TRWF = 85;% Number of loops for b_k with simple PR
Paramsrwf.cplx_flag = 1;
Den_X = norm(X,'fro');
frm_count = 0;
XX = reshape(X,n_1,n_2,numFrames);
Masks2 = zeros(n_1,n_2,L,Params.q);
for a = 1 : Params.q
Masks2(:,:,:,a) = reshape(randsrc(n_1*n_2, L, [1i -1i 1 -1]), n_1, n_2, L);
end
Y = zeros(n_1,n_2,L,q);
for a = 1 : Params.q
frame = XX(:,:,a);
frm_count = frm_count + 1;
%fprintf('Frame # %d ...\n', frm_count);
Masks = Masks2(:,:,:,a);
A = @(I) fft2(conj(Masks) .* reshape(repmat(I,[1 Params.L]), size(I,1), size(I,2), Params.L));
At = @(W) sum(Masks .* ifft2(W), 3) * size(W,1) * size(W,2);
Y(:,:,:,a) = abs(A(frame)).^2;
end
fprintf('data generation complete\n');
% Defining functions
Masks1 = Masks2;
Afull = @(I) fft2(conj(Masks1).*reshape(repmat(I,[1,L]), n_1, n_2, L, q));
Afull_t = @(E) sum(sum( Masks1 .* ifft2(E), 3) , 4)* n_1 * n_2; %* size(E,3);
Afull_tk = @(S) sum( Masks1 .* ifft2(S), 3)*n_1*n_2;% * size(E,1) * size(E,2) * size(E,3);
[B_hat, U_hat, Xhat, Uo_track] ...
= LRPR_prac_video(Params, Paramsrwf, Y, Afull, Afull_t, Afull_tk, Masks2);
%[Altmintime,Bhat, Uhat,Xhat] = alt_min_init(Y, Params, Afull, Afull_t, Afull_tk);
vdo_out_obj = VideoWriter('random');
open(vdo_out_obj);
Tmp_Err_X2 = zeros(q, 1);
for t = 1 : q
tmpframe = reshape(Xhat(:, :, t), Params.n_1, Params.n_2);
writeVideo(vdo_out_obj, uint8(abs(Xhat(:,:,t))));
xa_hat = reshape(abs(Xhat(:,:,t)),[],1);
%xa_hat = XX(:,t);
xa = reshape(X(:,t),[],1);
Tmp_Err_X2(t) = norm(xa - exp(-1i*angle(trace(xa'*xa_hat))) * xa_hat, 'fro');
end
Nom_Err_X_twf = mean(Tmp_Err_X2.^2);
ERRTWFP = Nom_Err_X_twf / Den_X;
close(vdo_out_obj);
% D = reshape(Xhat,n,q);
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% for na = 1 : Params.q
% xa_hat = D(:,na);
% xa = X(:,na);
% % % Tmp_Err_X(na) = min(norm(xa-xa_hat)^2, norm(xa+xa_hat)^2);
% Tmp_Err_X1(na) = norm(xa - exp(-1i*angle(trace(xa'*xa_hat))) * xa_hat, 'fro');
% end
% % Rel_Err(:,t)= Tmp_Err_X;
% % Err = sum(Tmp_Err_X1);
% % ERRinit = Err / Den_X;
% % fprintf('Our initialization Error is:\t%2.2e\n',ERRinit);
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
% % Z = Xhat;
% % tic;
% % for t = 1: Paramstwf.T
% % fprintf('Iteration # %d of main loop...\n', t);
% % for aa = 1 : q
% % Masks = Masks2(:,:,:,aa);
% % A = @(I) fft2(conj(Masks) .* reshape(repmat(I,[1 Paramstwf.L]), size(I,1), size(I,2), Paramstwf.L));
% % At = @(W) sum(Masks .* ifft2(W), 3) * size(W,1) * size(W,2);
% % % xhat(:,:,aa) = TWFgrad(Z(:,:,aa),Y(:,:,:,aa), Paramstwf, A, At) ;
% %
% % grad = compute_grad2(Z(:,:,aa), Y(:,:,:,aa), Paramstwf, A, At);
% % Z(:,:,aa) = Z(:,:,aa)- Paramstwf.mu * grad;
% % end
% % Xhat = reshape(Z,n,q);
% % % [UtwfE,SE,VE] = svds(Xhat,r);
% % % DD = UtwfE*SE*VE';
% % [UE,~,~,~] = BlockIter(Xhat,MaxIter,r);
% % %[UtwfE,SE,VE] = svds(Xhat,r);
% % %DD = UtwfE*SE*VE';
% % DD = UE*(UE'*Xhat);
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % % % for na = 1 : q
% % % % % xa_hat = DD(:,na);
% % % % % xa = X(:,na);
% % % % % % % Tmp_Err_X(na) = min(norm(xa-xa_hat)^2, norm(xa+xa_hat)^2);
% % % % % Tmp_Err_X(na) = norm(xa - exp(-1i*angle(trace(xa'*xa_hat))) * xa_hat, 'fro');
% % % % % end
% % % % % % Rel_Err(:,t)= Tmp_Err_X;
% % % % % Rel_Err = sum(Tmp_Err_X);
% % % % % ERR(:,t) = Rel_Err / Den_X;
% % %%% fprintf('TWF Projection Error is:\t%2.2e\n',ERR(:,t));
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% % Z = reshape(DD,n_1,n_2,q);
% %
% % end
% %TimeTWFLoop = toc;
%
%
%
%
%