forked from sandialabs/MATLAB_PV_LIB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pvl_detect_clear_times.m
262 lines (219 loc) · 10.2 KB
/
pvl_detect_clear_times.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
function [clearSamples, csGHI, alpha] = pvl_detect_clear_times(GHI, Time, UTCoffset, Location, win_length, sample_interval)
% PVL_DETECT_CLEAR_TIMES identifies times with irradiance consistent with
% clear sky conditions in a time series of GHI.
%
% Syntax
% [clearSamples, csGHI, alpha] = pvl_detect_clear_times(GHI, Time, UTCoffset, Location, win_length, sample_interval)
%
% Description
% Detects clear sky times by comparing statistics for a regular GHI
% time series to the Ineichen clear sky model. Statistics are calculated
% using a sliding time window (e.g., 10 minutes). An iterative algorithm
% identifies clear periods, uses the identified periods to estimate bias
% in the clear sky model and/or GHI data, adjusts the clear sky model and
% repeats. Code handles GHI data with some irregularities, i.e., missing
% values or unequal data spacing, but execution is significantly faster
% if data are equally spaced and without missing values.
%
% If non-daylight times are included the corresponding GHI values should
% be NaNs.
%
% Clear times are identified by meeting 5 criteria, thresholds
% for which are hardcoded in this version. Values for these thresholds
% are appropriate for 10 minute windows of 1 minute GHI data.
%
% Inputs:
% GHI - a Nx1 vector of GHI values (W/m2)
% Time - a Nx1 vector of datenum with equal time spacing
% UTCoffset - scalar UTC offset (e.g. EST = -5)
% Location - a struct with the following elements, note that all
% elements must be scalars in this application.
% Location.latitude - scalar latitude in decimal degrees (positive is
% northern hemisphere)
% Location.longitude - scalar longitude in decimal degrees (positive is
% east of prime meridian)
% Location.altitude - scalar height above sea level in meters.
% While altitude is optional in many uses, it is required in this
% model implementation.
% win_length - length of sliding time window in minutes, integer
% sample_interval - nominal minutes between each GHI sample time, integer
%
% Output:
% clearSamples - column vector of logical values with True indicating
% a clear sample in the input GHI time series
% csGHI - column vector with scaled clear sky GHI derived from the
% Ineichen model
% alpha - scaling factor applied to Ineichen model to obtain output csGHI
%
% References
% [1] Reno, M.J. and C.W. Hansen, "Identification of periods of clear sky
% irradiance in time series of GHI measurements" Renewable Energy, v90,
% p. 520-531, 2016.
%
% Notes:
% Initial implementation by Matthew Reno. Modifications for computational
% efficiency by Joshua Patrick and Curtis Martin.
%
% Threshold values for each criterion. Values are appropriate for 10
% minute windows with 1 minute intervals between GHI data.
% MeanDiff: threshold value in W/m2 for first criterion, i.e., agreement between mean
% values of GHI in each interval, see Eq. 6 in [1]
MeanDiff = 75;
% MaxDiff: threshold value in W/m2 for second criterion, i.e., agreement
% between maxima of GHI values in each interval, see Eq. 7 in [1]
MaxDiff = 75;
% LineLengthLower and LineLengthUpper: threshold values (unit is weird) for
% third criterion, i.e., agreement between line lengths of GHI data and
% clear sky GHI, see Eq. 8 in [1]. Criterion is satisfied when line length
% LL meets LineLengthLower <= LL <= LineLengthUpper
LineLengthLower = -5;
LineLengthUpper = 10;
% VarDiff: threshold value in 1/seconds for the fourth criterion, i.e.,
% agreement between normalized standard deviations of rate of change in
% irradiance, see Eq. 9 through Eq. 11 in [1]
VarDiff = 0.005;
% SlopeDev: threshold value in W/m2 for the fifth criterion, i.e.,
% agreement between largest magnitude of change in successive GHI values,
% see Eq. 12 through 14 in [1]
SlopeDev = 8;
dv = datevec(Time);
dates = datenum(dv(:,1:3));
days = unique(dates);
ivec = (1:length(Time))';
% check for equally spaced data, code execution is much faster with equal
% time spacing
sTime = diff(round(Time*1440)); % minutes between samples
if length(unique(sTime)) == 1 && mod(win_length, sample_interval)==0
% equally spaced data, none missing
equal_spacing = true;
else
equal_spacing = false;
end
% get sun angles for determining sunrise/sunset
[~, SunEl, ~, ~] = pvl_ephemeris(pvl_maketimestruct(Time,UTCoffset), Location);
daylight = SunEl > 1;
% Get standard Ineichen clear sky GHI
csGHI0 = pvl_clearsky_ineichen(pvl_maketimestruct(Time,UTCoffset),Location);
% replace NaNs with 0
csNaNs = isnan(csGHI0);
csGHI0(csNaNs) = 0;
% Create index matrix for windows
max_samples_per_window = 2 * win_length / sample_interval; % upper bound on number of data samples in an interval
min_samples_per_window = floor(0.8 * win_length / sample_interval) ; % lower bound on number of data samples in an interval
if not(equal_spacing)
% pre-allocate some arrays
clearMean = NaN(size(GHI));
clearMax = clearMean;
clearMaxSlope = clearMean;
timeDiff = zeros(max_samples_per_window, length(clearMean));
clearGHIDiff = timeDiff;
measuredMean = clearMean;
measuredMax = clearMean;
measuredMaxSlope = clearMean;
measuredSqSlope = clearMean;
measuredStdSlope = clearMean;
measuredLineLength = clearMean;
k = 0; % counts number of intervals meeting data size criteria, i.e., samples between min_samples_per_window and max_samples_per_window
for j = 1:length(Time)
tu = Time>=Time(j) & Time<(Time(j)+ (win_length + 1)/1440);
tidx = ivec(tu);
tmp_GHI = GHI(tidx);
if sum(daylight(tu)) < min_samples_per_window
% sun is not above horizon, skip interval
elseif sum(~isnan(tmp_GHI)) >= min_samples_per_window && ...
sum(~isnan(tmp_GHI)) <= max_samples_per_window % e.g., at least 8 measurements within a window but not more than 20
k = k + 1;
tmp_csGHI0 = csGHI0(tidx);
w = diff(Time(tidx)*1440); % time intervals in minutes between samples
% Calculate parameters (all but line length) for alpha=1 case
wx = [w; 0]/sum(w); % leave last point out of mean
clearMean(j) = sum(wx.*tmp_csGHI0);
clearMax(j) = max(tmp_csGHI0);
clearMaxSlope(j) = max(abs(diff(tmp_csGHI0,1,1)./w));
tmp_diffGHI = diff(tmp_csGHI0);
clearGHIDiff(1:length(tmp_diffGHI),j) = tmp_diffGHI;
timeDiff(1:length(tmp_diffGHI),j) = w;
% Calculate parameters for measured GHI
measuredMean(j) = sum(wx.*tmp_GHI);
measuredMax(j) = max(tmp_GHI);
tmpSlope = diff(tmp_GHI,1,1)./w;
measuredMaxSlope(j) = max(abs(tmpSlope));
measuredSqSlope(j) = sum(tmpSlope.^2);
measuredStdSlope(j) = std(tmpSlope);
measuredLineLength(j) = sum(sqrt(diff(tmp_GHI,1,1).^2 + w.^2));
else
% too much missing data or too many data samples
disp(['Data problem between ' datestr(min(Time(tu))) ' and ' datestr(max(Time(tu))) ...
' have ' num2str(sum(tu)) ' values']);
end
end
else % equal data spacing
samples_per_window = win_length / sample_interval;
H = hankel(1:samples_per_window,samples_per_window:length(Time));
clearMean = mean(csGHI0(H));
clearMax = max(csGHI0(H));
clearSlope = diff(csGHI0(H),1,1);
% Calculate parameters for measured GHI
measuredMean = mean(GHI(H));
measuredMax = max(GHI(H));
measuredSlope = diff(GHI(H),1,1);
measuredLineLength = sum(sqrt(measuredSlope.^2 + (sample_interval*ones(size(measuredSlope))).^2 ));
end
% Normalized variance of measured GHI < Vardeiff criterion doesn't depend on
% clear sky GHI, compute outside of iteration on CS model adjustment alpha
if not(equal_spacing)
c4 = measuredStdSlope ./ measuredMean < VarDiff;
else
c4 = std(measuredSlope) ./ measuredMean < VarDiff;
end
% initialize state for iterative process
alpha = 1; %start off with Ineichen clear sky model
% Start Iterative process of finding clear days, fitting clear sky model, finding clear days, ....
% Continue iterations until not finding any more clear days or 20 iterations
for ii=1:20
% Update clear sky model by scaling Ineichen
csGHI = alpha * csGHI0;
% Adjust Clear Sky Model parameters for scaling by alpha
if not(equal_spacing)
clearLineLength = sum(sqrt((alpha*clearGHIDiff).^2 + timeDiff.^2 ));
clearLineLength = clearLineLength(:);
else
clearLineLength = sum(sqrt((alpha*clearSlope).^2 + (sample_interval*ones(size(measuredSlope))).^2 ));
measuredMaxSlope = max(abs(measuredSlope));
clearMaxSlope = max(abs(clearSlope));
end
% Evaluate comparison criteria
c1 = abs(measuredMean - alpha * clearMean) < MeanDiff;
c2 = abs(measuredMax - alpha * clearMax) < MaxDiff;
c3 = (LineLengthLower < measuredLineLength - clearLineLength) & (measuredLineLength - clearLineLength < LineLengthUpper) ;
c5 = (measuredMaxSlope - alpha * clearMaxSlope) < SlopeDev;
c6 = clearMean ~= 0 & ~isnan(clearMean); % window includes some daylight
% Identify windows meeting all five (six) criteria
clearWindows = c1 & c2 & c3 & c4 & c5 & c6;
% Daily clearness is proportion of samples that are clear
dailyClearness = histcounts(Time(clearWindows),[days]) ./ ...
histcounts(Time(csGHI>25),[days]);
% Save current state
previousAlpha = alpha;
% Get new alpha by adjusting clear sky model to match clear times
% Need to minimize RMSE between GHI and alpha * csGHI0
clearSamples = false(size(GHI));
if not(equal_spacing)
for j = 1:length(Time)
if clearWindows(j)
tu = Time>=Time(j) & Time<(Time(j)+win_length/1440);
clearSamples(tu) = true;
end
end
else
clearSamples = ismember(ivec,H(:,clearWindows));
end
RMSE = @(x)sqrt(mean((GHI(clearSamples) - x*csGHI0(clearSamples)).^2));
alpha = fminsearch(RMSE, alpha); % update scaling factor on clear sky model
if round(alpha*10000)==round(previousAlpha*10000)
previousAlpha = alpha; %#ok<NASGU>
break
end
end % for loop
csGHI = alpha * csGHI0;
end % function