-
Notifications
You must be signed in to change notification settings - Fork 1
/
planning_utils.py
678 lines (571 loc) · 23 KB
/
planning_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
from enum import Enum
from queue import PriorityQueue
import numpy as np
import networkx as nx
from scipy.spatial import Voronoi
from bresenham import bresenham
import numpy.linalg as LA
from shapely.geometry import LineString, Polygon, Point
from sklearn.neighbors import KDTree
from random import sample
import time
import matplotlib.pyplot as plt
def create_grid(data, drone_altitude, safety_distance):
"""
Returns a grid representation of a 2D configuration space
based on given obstacle data, drone altitude and safety distance
arguments.
"""
# minimum and maximum north coordinates
north_min = np.floor(np.min(data[:, 0] - data[:, 3]))
north_max = np.ceil(np.max(data[:, 0] + data[:, 3]))
# minimum and maximum east coordinates
east_min = np.floor(np.min(data[:, 1] - data[:, 4]))
east_max = np.ceil(np.max(data[:, 1] + data[:, 4]))
# given the minimum and maximum coordinates we can
# calculate the size of the grid.
north_size = int(np.ceil(north_max - north_min))
east_size = int(np.ceil(east_max - east_min))
# Initialize an empty grid
grid = np.zeros((north_size, east_size))
# Populate the grid with obstacles
for i in range(data.shape[0]):
north, east, alt, d_north, d_east, d_alt = data[i, :]
if alt + d_alt + safety_distance > drone_altitude:
obstacle = [
int(np.clip(north - d_north - safety_distance - north_min, 0, north_size - 1)),
int(np.clip(north + d_north + safety_distance - north_min, 0, north_size - 1)),
int(np.clip(east - d_east - safety_distance - east_min, 0, east_size - 1)),
int(np.clip(east + d_east + safety_distance - east_min, 0, east_size - 1)),
]
grid[obstacle[0]:obstacle[1] + 1, obstacle[2]:obstacle[3] + 1] = 1
return grid, int(north_min), int(east_min)
# Assume all actions cost the same.
class Action(Enum):
"""
An action is represented by a 3 element tuple.
The first 2 values are the delta of the action relative
to the current grid position. The third and final value
is the cost of performing the action.
"""
WEST = (0, -1, 1)
EAST = (0, 1, 1)
NORTH = (-1, 0, 1)
SOUTH = (1, 0, 1)
@property
def cost(self):
return self.value[2]
@property
def delta(self):
return (self.value[0], self.value[1])
def valid_actions(grid, current_node):
"""
Returns a list of valid actions given a grid and current node.
"""
valid_actions = list(Action)
n, m = grid.shape[0] - 1, grid.shape[1] - 1
x, y = current_node
# check if the node is off the grid or
# it's an obstacle
if x - 1 < 0 or grid[x - 1, y] == 1:
valid_actions.remove(Action.NORTH)
if x + 1 > n or grid[x + 1, y] == 1:
valid_actions.remove(Action.SOUTH)
if y - 1 < 0 or grid[x, y - 1] == 1:
valid_actions.remove(Action.WEST)
if y + 1 > m or grid[x, y + 1] == 1:
valid_actions.remove(Action.EAST)
return valid_actions
def a_star(grid, h, start, goal):
path = []
path_cost = 0
queue = PriorityQueue()
queue.put((0, start))
visited = set(start)
branch = {}
found = False
while not queue.empty():
item = queue.get()
current_node = item[1]
if current_node == start:
current_cost = 0.0
else:
current_cost = branch[current_node][0]
if current_node == goal:
print('Found a path.')
found = True
break
else:
for action in valid_actions(grid, current_node):
# get the tuple representation
da = action.delta
next_node = (current_node[0] + da[0], current_node[1] + da[1])
branch_cost = current_cost + action.cost
queue_cost = branch_cost + h(next_node, goal)
if next_node not in visited:
visited.add(next_node)
branch[next_node] = (branch_cost, current_node, action)
queue.put((queue_cost, next_node))
if found:
# retrace steps
n = goal
path_cost = branch[n][0]
path.append(goal)
while branch[n][1] != start:
path.append(branch[n][1])
n = branch[n][1]
path.append(branch[n][1])
else:
print('**********************')
print('Failed to find a path!')
print('**********************')
return path[::-1], path_cost
def heuristic(position, goal_position):
"""[summary]
Args:
position ([type]): [description]
goal_position ([type]): [description]
Returns:
[type]: [description]
"""
return np.linalg.norm(np.array(position) - np.array(goal_position))
def create_graph_and_edges(data, drone_altitude, safety_distance):
"""Returns a grid representation of a 2D configuration space along with Voronoi graph edges given obstacle data and the drone's altitude.
Args:
data (pandas.DataFrame): containing obstacle centers and extensions in north and east directions
drone_altitude (float): desired altitude of flight
safety_distance (float): desired safety distance from obstacles
Returns:
grid: 2D occupancy map at 1m-by-1m resolution
G: Graph with nodes and edges of the configuration space
north_min: offset for north direction
east_min: offset for east direction
"""
# minimum and maximum north coordinates
north_min = np.floor(np.min(data[:, 0] - data[:, 3]))
north_max = np.ceil(np.max(data[:, 0] + data[:, 3]))
# minimum and maximum east coordinates
east_min = np.floor(np.min(data[:, 1] - data[:, 4]))
east_max = np.ceil(np.max(data[:, 1] + data[:, 4]))
# given the minimum and maximum coordinates we can
# calculate the size of the grid.
north_size = int(np.ceil((north_max - north_min)))
east_size = int(np.ceil((east_max - east_min)))
# Initialize an empty grid
grid = np.zeros((north_size, east_size))
# Center offset for grid
north_min_center = np.min(data[:, 0])
east_min_center = np.min(data[:, 1])
# Define a list to hold Voronoi points
points = []
# Populate the grid with obstacles
for i in range(data.shape[0]):
north, east, alt, d_north, d_east, d_alt = data[i, :]
if alt + d_alt + safety_distance > drone_altitude:
obstacle = [
int(np.clip(north - d_north - safety_distance - north_min, 0, north_size - 1)),
int(np.clip(north + d_north + safety_distance - north_min, 0, north_size - 1)),
int(np.clip(east - d_east - safety_distance - east_min, 0, east_size - 1)),
int(np.clip(east + d_east + safety_distance - east_min, 0, east_size - 1)),
]
grid[obstacle[0]:obstacle[1] + 1, obstacle[2]:obstacle[3] + 1] = 1
# add center of obstacles to points list
points.append([north - north_min, east - east_min])
# TODO: create a voronoi graph based on
# location of obstacle centres
graph = Voronoi(points)
print(len(graph.ridge_vertices))
# voronoi_plot_2d(graph)
# TODO: check each edge from graph.ridge_vertices for collision
edges = []
for v in graph.ridge_vertices:
p1 = graph.vertices[v[0]]
p2 = graph.vertices[v[1]]
#x1, y1 = int(p1[0]), int(p1[1])
#x2, y2 = int(p2[0]), int(p2[1])
#print(x1, y1)
#print(x2, y2)
cells = list(bresenham(int(p1[0]), int(p1[1]), int(p2[0]), int(p2[1])))
# print(cells)
# print(grid.shape)
hit = False
for c in cells:
if np.amin(c) < 0 or c[0] >= grid.shape[0] or c[1] >= grid.shape[1]:
hit = True
break
if grid[c[0], c[1]] == 1:
hit = True
break
if not hit:
p1 = (int(p1[0]), int(p1[1]))
p2 = (int(p2[0]), int(p2[1]))
edges.append((p1, p2))
G = nx.Graph()
for e in edges:
p1 = tuple(e[0])
p2 = tuple(e[1])
dist = LA.norm(np.array(p2) - np.array(p1))
G.add_edge(p1, p2, weight=dist)
return grid, G, int(north_min), int(east_min)
def euclidean_dist(p1, p2):
return np.sqrt((p2[0] - p1[0])**2 + (p2[1] - p1[1])**2)
def find_start_goal(graph, start, goal):
"""Find the closest node in the graph to the specified start and goal location specifed as argument. This mapping is necessary since the start and goal positions are not bound by locations in the configuration space.
Args:
graph (nx.Graph): containing nodes and edges
start (tuple): containing start north and east coordinate
goal (tuple): containing goal north and east coordinate
Returns:
near_start (tuple): containing closest node in the graph to the specified start location
near_goal (tuple): containing closest node in the graph to the specified goal location
"""
# TODO: find start and goal in the graph
near_start = None
near_goal = None
near_start_list = []
near_goal_list = []
first_iter = True
min_dist_start = None
min_dist_goal = None
for n in graph:
# print(n)
start_dist = euclidean_dist(np.array(n), np.array(start))
goal_dist = euclidean_dist(np.array(n), np.array(goal))
if first_iter:
min_dist_start = start_dist
min_dist_goal = goal_dist
near_start = n
near_goal = n
first_iter = False
else:
if start_dist < min_dist_start:
#print(f'near_start: {n}')
near_start_list.append(n)
min_dist_start = start_dist
near_start = n
if goal_dist < min_dist_goal:
#print(f'near_goal: {n}')
near_goal_list.append(n)
min_dist_goal = goal_dist
near_goal = n
return near_start, near_goal
# Modified A* that works with graph
def a_star_graph(G, h, start, goal):
"""Perform A* search from start to goal using the specified heuristic function over the graph G.
Args:
G (nx.Graph): containing nodes and edges of the configuration space
h (function): heuristic function, e.g., euclidean distance
start (node): start node of nx.Graph
goal ([type]): goal node of nx.Graph
Returns:
path (list): containing coordinates of waypoints
cost (float): path cost
"""
path = []
path_cost = 0
queue = PriorityQueue()
queue.put((0, start))
visited = set(start)
branch = {}
found = False
while not queue.empty():
item = queue.get()
current_node = item[1]
if current_node == start:
current_cost = 0.0
else:
current_cost = branch[current_node][0]
if current_node == goal:
print('Found a path.')
found = True
break
else:
# For a graph, next possible action is the
# node that is closest to the current node
for n_node in G.neighbors(current_node):
edge_data = G.get_edge_data(current_node, n_node)
# get the tuple representation
# da = action.delta
# next_node = (current_node[0] + da[0], current_node[1] + da[1])
branch_cost = current_cost + edge_data['weight']
queue_cost = branch_cost + h(n_node, goal)
if n_node not in visited:
visited.add(n_node)
branch[n_node] = (branch_cost, current_node, n_node)
queue.put((queue_cost, n_node))
if found:
# retrace steps
n = goal
path_cost = branch[n][0]
path.append(goal)
while branch[n][1] != start:
path.append(branch[n][1])
n = branch[n][1]
path.append(branch[n][1])
else:
print('**********************')
print('Failed to find a path!')
print('**********************')
return path[::-1], path_cost
def condense_waypoints(grid, path):
"""
Apply Bresenham over all points in the path and retain
minimal waypoints. Will retain fisrt and last waypoint.
Args:
grid (numpy.ndarray): representing occupancy of cells
where 1 represents occupied and 0 represents
not-occupied
path (list): waypoints possibly containg redundant points
Returns:
(list): containing munimal points from start to end point
in path
"""
sampled_waypoints = []
last_p2 = None
for p in path:
if not sampled_waypoints:
sampled_waypoints.append((int(p[0]), int(p[1])))
last_p2 = p
else:
p1 = sampled_waypoints[-1]
cells = list(bresenham(int(p1[0]), int(p1[1]),
int(p[0]), int(p[1])))
hit = False
for c in cells:
if grid[c[0], c[1]] == 1:
hit = True
if not hit:
last_p2 = p
else:
sampled_waypoints.append((int(last_p2[0]), int(last_p2[1])))
# Ensure last point in the path is in the condensed path
p_last = path[-1]
if not (int(p_last[0]), int(p_last[1])) in sampled_waypoints:
sampled_waypoints.append((int(p_last[0]), int(p_last[1])))
return sampled_waypoints
# Create polygons for obstacles using x and y coordinates
# and store z coordinate with the polygon
def extract_polygons(data, apply_offset=True):
# minimum and maximum north coordinates
north_min = np.floor(np.min(data[:, 0] - data[:, 3]))
north_max = np.ceil(np.max(data[:, 0] + data[:, 3]))
# minimum and maximum east coordinates
east_min = np.floor(np.min(data[:, 1] - data[:, 4]))
east_max = np.ceil(np.max(data[:, 1] + data[:, 4]))
alt_max = np.ceil(np.amax(data[:, 2] + data[:, 5]))
# given the minimum and maximum coordinates we can
# calculate the size of the grid.
north_size = int(np.ceil((north_max - north_min)))
east_size = int(np.ceil((east_max - east_min)))
alt_size = int(alt_max)
polygons = []
for i in range(data.shape[0]):
north, east, alt, d_north, d_east, d_alt = data[i, :]
# TODO: Extract the 4 corners of the obstacle
#
# NOTE: The order of the points matters since
# `shapely` draws the sequentially from point to point.
#
# If the area of the polygon is 0 you've likely got a weird
# order.
# corners = [None, None, None, None]
if apply_offset:
corners = [
(north - d_north - north_min, east - d_east - east_min),
(north - d_north - north_min, east + d_east - east_min),
(north + d_north - north_min, east + d_east - east_min),
(north + d_north - north_min, east - d_east - east_min)
]
else:
corners = [
(north - d_north, east - d_east),
(north - d_north, east + d_east),
(north + d_north, east + d_east),
(north + d_north, east - d_east)
]
# TODO: Compute the height of the polygon
height = alt + d_alt
# TODO: Once you've defined corners, define polygons
p = Polygon(corners)
polygons.append((p, height))
return polygons
def collides_kdtree(polygons, tree, point):
# TODO: Determine whether the point collides
# with any obstacles.
x, y, z = point
p = Point(x, y)
p_array = np.array([x, y])
# Get closest polygon
idx = tree.query([p_array],
k=1, return_distance=False)[0]
obstacle = polygons[idx[0]]
o_poly = obstacle[0]
o_height = obstacle[1]
if o_poly.contains(p) and z < o_height:
return True
return False
def can_connect(polygons, p1, p2):
l = LineString([p1, p2])
for poly, height in polygons:
if l.crosses(poly):
return False
return True
def can_connect_fast(polygons, tree_poly, p1, p2):
"""
Faster implementation of can_connect() method using random sampling of points on the line between p1 and p2 and KDTree to query for polygons that are close to the points
Args:
polygons (tuple): containing (polygon, height) for all obstacles
tree_poly (KDTree): indexed using ploygon vertices
p1 (tuple): containing north, east coordinate of first point
p2 (tuple): containing north, east coordinate of first point
Returns:
(bool): True of p1 and p2 can be connected. False otherwise.
"""
# Find closest poly for p1 and p2 and check if line
# intersects with one of them
l = LineString([p1, p2])
# Find closeset polygon to the points
idx = tree_poly.query([np.array(p1)],
k=1, return_distance=False)[0]
poly1 = polygons[idx[0]][0]
if l.crosses(poly1):
return False
# Sample points on the line
# for i in [0.25, 0.5, 0.75]:
for i in np.arange(0.1, 0.9, 0.1):
p = l.interpolate(i, normalized=True)
# print(p)
idx = tree_poly.query([np.array(p)],
k=1, return_distance=False)[0]
poly2 = polygons[idx[0]][0]
# If line crosses the any polygon, we cannot connect
if l.crosses(poly2):
return False
return True
def construct_road_map(data, drone_altitude, safety_distance, num_nodes, neighbors):
"""Probablistic Road Map construction by randomly sampling points, check if points and edges between them are feasible using occupancy, initialize start and goal nodes, find and return path betwen start and goal nodes.
Args:
data (pandas.DataFrame): containing obstacle centers and extensions in north and east directions
drone_altitude (float): desired altitude of flight
safety_distance (float): desired safety distance from obstacles
num_nodes (int): to be sampled
neighbors (int): number of neighbors to check for possible connections
Returns:
grid: 2D occupancy map at 1m-by-1m resolution
g: Graph with nodes and edges of the configuration space
north_min: offset for north direction
east_min: offset for east direction
"""
grid, north_min, east_min = create_grid(
data, drone_altitude, safety_distance)
print("Completed grid construction...")
polygons = extract_polygons(data, apply_offset=False)
poly_bounds = []
for poly, height in polygons:
poly_bounds.append(np.array(list(poly.centroid.coords))[0])
print("Completed polygon creation for obstacles...")
tree_poly = KDTree(np.array(poly_bounds))
print("Completed KDTree cretation for polygons...")
g = nx.Graph()
# Randomly sample points
xmin = np.min(data[:, 0] - data[:, 3])
xmax = np.max(data[:, 0] + data[:, 3])
ymin = np.min(data[:, 1] - data[:, 4])
ymax = np.max(data[:, 1] + data[:, 4])
zmin = 0
# Limit the z axis for the visualization
zmax = 10
# Randomly sample nodes to be added
num_samples = 50
to_keep = []
while len(to_keep) < num_nodes:
xvals = np.random.randint(xmin, xmax, num_samples)
yvals = np.random.randint(ymin, ymax, num_samples)
zvals = np.random.randint(zmin, zmax, num_samples)
samples = list(zip(xvals, yvals, zvals))
# Check for collission free nodes
for point in samples:
if not collides_kdtree(polygons, tree_poly, point):
to_keep.append(point)
print("Completed node selection...")
# randomly sample nodes from to_keep, find neighbors
# and add edges when fesible
edges = {}
while len(g.edges) < num_nodes:
nodes_sampled = sample(to_keep, num_samples)
# print(nodes_sampled)
nodes = []
for point in nodes_sampled:
nodes.append([point[0], point[1]])
tree = KDTree(np.array(nodes))
# print("KDTree created for the sampled nodes...")
for n in nodes:
# print("Querying the KKDTree...")
idx = tree.query([np.array(n)],
k=neighbors, return_distance=False)[0]
# print("Got back response...")
# check if node n is connectable to
# the nodes that idx refers to
for i in idx:
n_i = np.array(nodes[i])
if tuple(n) == tuple(n_i):
continue
if tuple(n) in edges:
if edges[tuple(n)] == tuple(n_i):
continue
if tuple(n_i) in edges:
if edges[tuple(n_i)] == tuple(n):
continue
# print("Checking can_connect() ...")
# Too slow on the simulator!
if can_connect_fast(polygons, tree_poly, Point(n), Point(n_i)):
g.add_edge(tuple(n), tuple(n_i), weight=1)
edges[tuple(n)] = tuple(n_i)
edges[tuple(n_i)] = tuple(n)
# print("can be connected.")
# cells = list(bresenham(int(n[0]), int(n[1]), int(n_i[0]), int(n_i[1])))
# # print(cells)
# # print(grid.shape)
# hit = False
# for c in cells:
# if np.amin(c) < 0 or c[0] >= grid.shape[0] or c[1] >= grid.shape[1]:
# hit = True
# break
# if grid[c[0], c[1]] == 1:
# hit = True
# break
# if not hit:
# g.add_edge(tuple(n), tuple(n_i), weight=1)
# print("Completed adding feasible edges to the batch...")
# print("Number of edges", len(g.edges))
# Visualize graph
# visualize_prob_road_map(data, grid, g)
print("Completed all edge additions.")
return grid, g, int(north_min), int(east_min)
def visualize_prob_road_map(data, grid, g):
fig = plt.figure()
plt.imshow(grid, cmap='Greys', origin='lower')
nmin = np.min(data[:, 0])
emin = np.min(data[:, 1])
# If you have a graph called "g" these plots should work
# Draw edges
for (n1, n2) in g.edges:
plt.plot([n1[1] - emin, n2[1] - emin], [n1[0] - nmin, n2[0] - nmin], 'black', alpha=0.5)
# Draw all nodes connected or not in blue
# for n1 in nodes:
# plt.scatter(n1[1] - emin, n1[0] - nmin, c='blue')
# Draw connected nodes in red
for n1 in g.nodes:
plt.scatter(n1[1] - emin, n1[0] - nmin, c='red')
plt.xlabel('NORTH')
plt.ylabel('EAST')
plt.show()
if __name__ == '__main__':
# Read in obstacle map
data = np.loadtxt('colliders.csv', delimiter=',', dtype='Float64', skiprows=2)
TARGET_ALTITUDE = 5
SAFETY_DISTANCE = 5
st = time.time()
construct_road_map(data, TARGET_ALTITUDE, SAFETY_DISTANCE, 500, 4)
time_taken = time.time() - st
print(f'construct_road_map() took: {time_taken} seconds')