-
Notifications
You must be signed in to change notification settings - Fork 1
/
motion_planning.py
367 lines (308 loc) · 15.8 KB
/
motion_planning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import argparse
import time
import msgpack
from enum import Enum, auto
import matplotlib.pyplot as plt
import numpy as np
import numpy.linalg as LA
from shapely.geometry import LineString, Polygon, Point
from sklearn.neighbors import KDTree
from planning_utils import a_star, heuristic, create_grid
from planning_utils import create_graph_and_edges, find_start_goal
from planning_utils import a_star_graph, condense_waypoints, extract_polygons, construct_road_map
from udacidrone import Drone
from udacidrone.connection import MavlinkConnection
from udacidrone.messaging import MsgID
from udacidrone.frame_utils import global_to_local
class States(Enum):
MANUAL = auto()
ARMING = auto()
TAKEOFF = auto()
WAYPOINT = auto()
LANDING = auto()
DISARMING = auto()
PLANNING = auto()
class MotionPlanning(Drone):
def __init__(self, connection):
super().__init__(connection)
self.target_position = np.array([0.0, 0.0, 0.0])
self.waypoints = []
self.in_mission = True
self.check_state = {}
# initial state
self.flight_state = States.MANUAL
# register all your callbacks here
self.register_callback(MsgID.LOCAL_POSITION, self.local_position_callback)
self.register_callback(MsgID.LOCAL_VELOCITY, self.velocity_callback)
self.register_callback(MsgID.STATE, self.state_callback)
def local_position_callback(self):
if self.flight_state == States.TAKEOFF:
if -1.0 * self.local_position[2] > 0.95 * self.target_position[2]:
self.waypoint_transition()
elif self.flight_state == States.WAYPOINT:
if np.linalg.norm(self.target_position[0:2] - self.local_position[0:2]) < 1.0:
if len(self.waypoints) > 0:
self.waypoint_transition()
else:
if np.linalg.norm(self.local_velocity[0:2]) < 1.0:
self.landing_transition()
def velocity_callback(self):
if self.flight_state == States.LANDING:
if self.global_position[2] - self.global_home[2] < 0.1:
if abs(self.local_position[2]) < 0.01:
self.disarming_transition()
def state_callback(self):
if self.in_mission:
if self.flight_state == States.MANUAL:
self.arming_transition()
elif self.flight_state == States.ARMING:
if self.armed:
# self.plan_path()
self.plan_path_graph()
# self.prob_road_map()
elif self.flight_state == States.PLANNING:
self.takeoff_transition()
elif self.flight_state == States.DISARMING:
if ~self.armed & ~self.guided:
self.manual_transition()
def arming_transition(self):
self.flight_state = States.ARMING
print("arming transition")
self.arm()
self.take_control()
def takeoff_transition(self):
self.flight_state = States.TAKEOFF
print("takeoff transition")
self.takeoff(self.target_position[2])
def waypoint_transition(self):
self.flight_state = States.WAYPOINT
print("waypoint transition")
self.target_position = self.waypoints.pop(0)
print('target position', self.target_position)
self.cmd_position(self.target_position[0], self.target_position[1],
self.target_position[2], self.target_position[3])
def landing_transition(self):
self.flight_state = States.LANDING
print("landing transition")
self.land()
def disarming_transition(self):
self.flight_state = States.DISARMING
print("disarm transition")
self.disarm()
self.release_control()
def manual_transition(self):
self.flight_state = States.MANUAL
print("manual transition")
self.stop()
self.in_mission = False
def send_waypoints(self):
print("Sending waypoints to simulator ...")
data = msgpack.dumps(self.waypoints)
self.connection._master.write(data)
def read_home_lat_lon(self, file_path):
lat, lon = None, None
with open(file_path) as f:
first_line = f.readline()
lat_lon_str = first_line.split(",")
lat_lon_str = list(map(str.strip, lat_lon_str))
lat = lat_lon_str[0].split(" ")[1]
lon = lat_lon_str[1].split(" ")[1]
return float(lat), float(lon)
def plan_path(self):
self.flight_state = States.PLANNING
print("Searching for a path ...")
TARGET_ALTITUDE = 5
SAFETY_DISTANCE = 8
self.target_position[2] = TARGET_ALTITUDE
# TODO: read lat0, lon0 from colliders into floating point values
lat0, lon0 = self.read_home_lat_lon('colliders.csv')
# TODO: set home position to (lon0, lat0, 0)
print(f'Setting home to (lon0, lat0, 0): ({lon0, lat0, 0})')
self.set_home_position(lon0, lat0, 0)
# TODO: retrieve current global position
global_position = self.global_position
# TODO: convert to current local position using global_to_local()
local_home = global_to_local(global_position, self.global_home)
print(f'Home coordinates in local form: {local_home}')
print('global home {0}, position {1}, local position {2}'.format(self.global_home, self.global_position,
self.local_position))
# Read in obstacle map
data = np.loadtxt('colliders.csv', delimiter=',', dtype='Float64', skiprows=2)
# Define a grid for a particular altitude and safety margin around obstacles
grid, north_offset, east_offset = create_grid(data, TARGET_ALTITUDE, SAFETY_DISTANCE)
print("North offset = {0}, east offset = {1}".format(north_offset, east_offset))
# Define starting point on the grid (this is just grid center)
# grid_start = (-north_offset, -east_offset)
# TODO: convert start position to current position rather than map center
grid_start = (int(self.local_position[0] - north_offset),
int(self.local_position[1] - east_offset))
# Set goal as some arbitrary position on the grid
# grid_goal = (grid_start[0] + 10, grid_start[1] + 10)
# grid_goal = (430, 350) # this is a good test goal state
# TODO: adapt to set goal as latitude / longitude position and convert
# (430, 350) corresponds to (lat, lon) == (37.793510, -122.398525)
goal_lon_lat = [-122.398525, 37.793510, 0]
# goal_lon_lat = [-122.398250, 37.793875, 0]
# goal_lon_lat = [-122.398275, 37.796875, 0]
# goal_lon_lat = [-122.399970, 37.795947, 0] # complicted path
# goal_lon_lat = [-122.393284, 37.790545, 0]
# goal_lon_lat = [-122.401173, 37.795514, 0] # (point1)
local_position_goal = global_to_local(goal_lon_lat, self.global_home)
grid_goal = (int(local_position_goal[0] - north_offset),
int(local_position_goal[1] - east_offset))
# print(grid_goal)
# Run A* to find a path from start to goal
# TODO: add diagonal motions with a cost of sqrt(2) to your A* implementation
# or move to a different search space such as a graph (not done here)
print('Local Start and Goal: ', grid_start, grid_goal)
path, _ = a_star(grid, heuristic, grid_start, grid_goal)
# TODO: prune path to minimize number of waypoints
# TODO (if you're feeling ambitious): Try a different approach altogether!
# Convert path to waypoints
waypoints = [[p[0] + north_offset, p[1] + east_offset, TARGET_ALTITUDE, 0] for p in path]
# Set self.waypoints
self.waypoints = waypoints
# TODO: send waypoints to sim (this is just for visualization of waypoints)
self.send_waypoints()
def plan_path_graph(self):
"""
Construct a configuration space using a graph representation, set destination GPS position, find a path from start (current) position to destination, and minimize and set waypoints.
"""
self.flight_state = States.PLANNING
print("Searching for a path ...")
TARGET_ALTITUDE = 5
SAFETY_DISTANCE = 5
self.target_position[2] = TARGET_ALTITUDE
# TODO: read lat0, lon0 from colliders into floating point values
lat0, lon0 = self.read_home_lat_lon('colliders.csv')
# TODO: set home position to (lon0, lat0, 0)
print(f'Setting home to (lon0, lat0, 0): ({lon0, lat0, 0})')
self.set_home_position(lon0, lat0, 0)
# TODO: retrieve current global position
global_position = self.global_position
# TODO: convert to current local position using global_to_local()
local_home = global_to_local(global_position, self.global_home)
print(f'Home coordinates in local form: {local_home}')
print('global home {0}, position {1}, local position {2}'.format(self.global_home, self.global_position,
self.local_position))
# Read in obstacle map
data = np.loadtxt('colliders.csv', delimiter=',', dtype='Float64', skiprows=2)
# Define a graph for a particular altitude and safety margin around obstacles
grid, G, north_offset, east_offset = create_graph_and_edges(
data, TARGET_ALTITUDE, SAFETY_DISTANCE)
# TODO: convert start position to current position rather than map center
grid_start = (int(self.local_position[0] - north_offset),
int(self.local_position[1] - east_offset))
# goal_lon_lat = [-122.398525, 37.793510, 0]
# goal_lon_lat = [-122.398250, 37.793875, 0]
# goal_lon_lat = [-122.398275, 37.796875, 0] # (point3) reachable if SAFETY_DISTANCE = 5
# goal_lon_lat = [-122.399970, 37.795947, 0] # reachable if SAFETY_DISTANCE = 5
# goal_lon_lat = [-122.393284, 37.790545, 0] # (point2)
goal_lon_lat = [-122.401173, 37.795514, 0] # (point1)
# goal_lon_lat = [-122.393805, 37.795825, 0] # not reachable if TARGET_ALTITUDE = 5
# (point1) -> (point2) -> (point3) this sequence results in some
# trees getting in the way of the drone. This is a good example
# of imprecise maps and we may have to use receding horizon
# planning which utilizes a 3D state space for a limited region
# around the drone.
grid_goal = global_to_local(goal_lon_lat, self.global_home)
grid_goal = (int(grid_goal[0] - north_offset),
int(grid_goal[1] - east_offset))
# Find closest node on the Vornoi graph
g_start, g_goal = find_start_goal(G, grid_start, grid_goal)
print("Start and Goal location:", grid_start, grid_goal)
print("Start and Goal location on Vornoi graph:", g_start, g_goal)
path, _ = a_star_graph(G, heuristic, g_start, g_goal)
# Add the final goal state (instead of the approximated
# goal on the graph)
path.append(grid_goal)
# print(path)
# Reduce waypoints
path = condense_waypoints(grid, path)
# print(path)
# Convert path to waypoints
waypoints = [[p[0] + north_offset, p[1] + east_offset, TARGET_ALTITUDE, 0] for p in path]
# Set self.waypoints
self.waypoints = waypoints
# TODO: send waypoints to sim (this is just for visualization of waypoints)
self.send_waypoints()
def prob_road_map(self):
"""Probablistic Road Map implementation to create configuration space, set start and goal positions, find path from start to goal, and condense and set waypoints for navigation.
"""
self.flight_state = States.PLANNING
print("Searching for a path ...")
TARGET_ALTITUDE = 5
SAFETY_DISTANCE = 5
self.target_position[2] = TARGET_ALTITUDE
# TODO: read lat0, lon0 from colliders into floating point values
lat0, lon0 = self.read_home_lat_lon('colliders.csv')
# TODO: set home position to (lon0, lat0, 0)
print(f'Setting home to (lon0, lat0, 0): ({lon0, lat0, 0})')
self.set_home_position(lon0, lat0, 0)
# TODO: retrieve current global position
global_position = self.global_position
# TODO: convert to current local position using global_to_local()
local_home = global_to_local(global_position, self.global_home)
print(f'Home coordinates in local form: {local_home}')
print('global home {0}, position {1}, local position {2}'.format(self.global_home, self.global_position,
self.local_position))
# Read in obstacle map
data = np.loadtxt('colliders.csv', delimiter=',', dtype='Float64', skiprows=2)
print(f'Constructing Probablistic Road Map...')
st = time.time()
grid, G, north_offset, east_offset = construct_road_map(
data, TARGET_ALTITUDE, SAFETY_DISTANCE, 500, 4)
time_taken = time.time() - st
print(f'construct_road_map() took: {time_taken} seconds')
# TODO: convert start position to current position rather than map center
grid_start = (int(self.local_position[0] - north_offset),
int(self.local_position[1] - east_offset))
# goal_lon_lat = [-122.398525, 37.793510, 0]
# goal_lon_lat = [-122.398250, 37.793875, 0]
# goal_lon_lat = [-122.398275, 37.796875, 0] # (point3) reachable if SAFETY_DISTANCE = 5
# goal_lon_lat = [-122.399970, 37.795947, 0] # reachable if SAFETY_DISTANCE = 5
# goal_lon_lat = [-122.393284, 37.790545, 0] # (point2)
goal_lon_lat = [-122.401173, 37.795514, 0] # (point1)
# goal_lon_lat = [-122.393805, 37.795825, 0] # not reachable if TARGET_ALTITUDE = 5
# (point1) -> (point2) -> (point3) this sequence results in some
# trees getting in the way of the drone. This is a good example
# of imprecise mapping and we may have to use receding horizon
# planning which utilizes a 3D state space for a limited region
# around the drone.
grid_goal = global_to_local(goal_lon_lat, self.global_home)
grid_goal = (int(grid_goal[0] - north_offset),
int(grid_goal[1] - east_offset))
# Find closest node on probablistic road map graph
g_start, g_goal = find_start_goal(G, grid_start, grid_goal)
print("Start and Goal location:", grid_start, grid_goal)
print("Start and Goal location on graph:", g_start, g_goal)
path, _ = a_star_graph(G, heuristic, g_start, g_goal)
# Add the final goal state (instead of the approximated
# goal on the graph)
path.append(grid_goal)
print(path)
# Reduce waypoints
path = condense_waypoints(grid, path)
# Convert path to waypoints
waypoints = [[p[0] + north_offset, p[1] + east_offset, TARGET_ALTITUDE, 0] for p in path]
# Set self.waypoints
self.waypoints = waypoints
# TODO: send waypoints to sim (this is just for visualization of waypoints)
self.send_waypoints()
def start(self):
self.start_log("Logs", "NavLog.txt")
print("starting connection")
self.connection.start()
# Only required if they do threaded
# while self.in_mission:
# pass
self.stop_log()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, default=5760, help='Port number')
parser.add_argument('--host', type=str, default='127.0.0.1', help="host address, i.e. '127.0.0.1'")
args = parser.parse_args()
conn = MavlinkConnection('tcp:{0}:{1}'.format(args.host, args.port), timeout=600)
drone = MotionPlanning(conn)
time.sleep(1)
drone.start()