-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathspm.py
108 lines (80 loc) · 2.6 KB
/
spm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
''' Interfaces to SPM '''
from __future__ import with_statement
import os
import numpy as np
from scipy.io import savemat
from nibabel import load
from nibabel.tmpdirs import InTemporaryDirectory
from matlab import run_matlab_script
class SpmInfo(object):
def __init__(self):
self._spm_path = None
self._spm_ver = None
def _set_properties(self):
with InTemporaryDirectory():
run_matlab_script(r"""
spm_path = spm('dir');
spm_ver = spm('ver');
fid = fopen('spm_stuff.txt', 'wt');
fprintf(fid, '%s\n', spm_path);
fprintf(fid, '%s\n', spm_ver);
fclose(fid);
""")
with open('spm_stuff.txt', 'rt') as fobj:
lines = fobj.readlines()
self._spm_path = lines[0].strip()
self._spm_ver = lines[1].strip()
@property
def spm_path(self):
if self._spm_path is None:
self._set_properties()
return self._spm_path
@property
def spm_ver(self):
if self._spm_ver is None:
self._set_properties()
return self._spm_ver
spm_info = SpmInfo()
def make_job(jobtype, jobname, contents):
return {'jobs':[{jobtype:[{jobname:contents}]}]}
# XXX this should be moved into a matdict class or something
def fltcols(vals):
''' Trivial little function to make 1xN float vector '''
return np.atleast_2d(np.array(vals, dtype=float))
def run_jobdef(jobdef):
script = """
load pyjobs;
spm_jobman('run', jobs);
"""
# Need initcfg for SPM8
if spm_info.spm_ver != 'SPM5':
script = "spm_jobman('initcfg');\n" + script
with InTemporaryDirectory():
savemat('pyjobs.mat', jobdef, oned_as='row')
run_matlab_script(script)
def scans_for_fname(fname):
img = load(fname)
n_scans = img.shape[3]
scans = np.zeros((n_scans, 1), dtype=object)
for sno in range(n_scans):
scans[sno] = '%s,%d' % (fname, sno+1)
return scans
def scans_for_fnames(fnames):
n_sess = len(fnames)
sess_scans = np.zeros((1,n_sess), dtype=object)
for sess in range(n_sess):
sess_scans[0,sess] = scans_for_fname(fnames[sess])
return sess_scans
def fname_presuffix(fname, prefix='', suffix='', use_ext=True):
pth, fname = os.path.split(fname)
fname, ext = os.path.splitext(fname)
if not use_ext:
ext = ''
return os.path.join(pth, prefix+fname+suffix+ext)
def fnames_presuffix(fnames, prefix='', suffix=''):
f2 = []
for fname in fnames:
f2.append(fname_presuffix(fname, prefix, suffix))
return f2