From 1ccc12c5df24eec6778af0e6e64f9ccb102354e0 Mon Sep 17 00:00:00 2001 From: Arjun Mukerji Date: Mon, 16 Nov 2015 13:28:57 -0800 Subject: [PATCH] hastily-written homework solutions... --- day3/slice_time_image.py | 52 +- day3/slice_timing.ipynb | 816 +++++++++++++++--------------- day3/slice_timing_solutions.ipynb | 68 ++- 3 files changed, 501 insertions(+), 435 deletions(-) diff --git a/day3/slice_time_image.py b/day3/slice_time_image.py index ff73e3d..3c9d69c 100644 --- a/day3/slice_time_image.py +++ b/day3/slice_time_image.py @@ -21,10 +21,11 @@ """ # Add any extra imports here -import sys - +import sys, os import nibabel as nib - +import numpy as np +import matplotlib.pyplot as plt +from scipy.interpolate import InterpolatedUnivariateSpline def slice_time_image(img, slice_times, TR): """Run slice-timing correction on nibabel image 'img'. @@ -47,8 +48,13 @@ def slice_time_image(img, slice_times, TR): A new copy of the input image with slice-time interpolation applied """ # Get the image data as an array; + data = img.get_data() + # Make a new empty array "interp_data" to hold the interpolated data; + interp_data = np.array(data.shape) + # Do the interpolation; + # This is how to make a new image with the interpolated data new_img = nib.Nifti1Image(interp_data, img.affine, img.header) return new_img @@ -71,23 +77,57 @@ def slice_time_file(fname, slice_times, TR): TR: double Repetition time in seconds. """ + img = nib.load(fname) + fdir, fn = os.path.split(fname) + fslug, ext = os.path.splitext(fn) + new_fname = os.path.join(fdir, fslug+'_st'+ext) # Hint: use os.path.split and os.path.join to make the new filename - nib.save(interp_img, new_fname) - + data = img.get_data() + # discard first tp (???) + fixed_data = data[..., 1:] + new_data = fixed_data.copy() + n_tps = fixed_data.shape[3] + s0_times = TR * np.asarray(range(n_tps)) + for x in range(fixed_data.shape[0]): + for y in range(fixed_data.shape[1]): + for z in range(fixed_data.shape[2]): + ts = fixed_data[x, y, z, :] + xs = (TR * np.asarray(range(n_tps))) + slice_times[z] + interp = InterpolatedUnivariateSpline(xs, ts, k=1) + new_series = interp(s0_times) + new_data[x,y,z,:] = new_series + + new_img = nib.Nifti1Image(new_data, img.affine, img.header) + nib.save(new_img, new_fname) def main(): """ This function will be called when this file is run as a script """ # Get the filename from the command line parameters fname = sys.argv[1] + img = nib.load(fname) + n_slices = img.shape[2] # Assume the TR TR = 2.0 + slice_duration = TR/n_slices + + e_slices = range(0, n_slices, 2) # 0 2 4 + o_slices = range(1, n_slices, 2) # 1 3 5 + ind_order = [] + ind_order.extend(e_slices) + ind_order.extend(o_slices) + + offsets = slice_duration * np.asarray(range(n_slices)) + print offsets + slice_times = np.zeros(n_slices) + slice_times[ind_order] = offsets + print(slice_times) + # Assume the slices were acquired even slices first, inferior to # superior, then odd slices, inferior to superior, where the most inferior # slice is index 0 and 0 is an even number. What are the slice acquisition # times in seconds, where the first value is the acquisition time of slice # 0, the second is acquisition time of slice 1, etc? - slice_times = ? slice_time_file(fname, slice_times, TR) diff --git a/day3/slice_timing.ipynb b/day3/slice_timing.ipynb index 80ff6f2..2cab806 100644 --- a/day3/slice_timing.ipynb +++ b/day3/slice_timing.ipynb @@ -1,397 +1,425 @@ { + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# - compatibility with Python 3\n", + "from __future__ import print_function # print('me') instead of print 'me'\n", + "from __future__ import division # 1/2 == 0.5, not 0" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# - show figures inside the notebook\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# - import common modules\n", + "import numpy as np # the Python array package\n", + "import matplotlib.pyplot as plt # the Python plotting package" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# - set defaults for plotting\n", + "plt.rcParams['image.cmap'] = 'gray'\n", + "plt.rcParams['image.interpolation'] = 'nearest'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Load the image `ds114_sub009_t2r1.nii` with nibabel. Get the data:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Load the image 'ds114_sub009_t2r1.nii' with nibabel\n", + "# Get the data array from the image" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you remember, the first volume in this dataset is a lot different from the rest, and this will mess up our interpolation in time.\n", + "\n", + "So, we need to remove the first volume from the data first, using slicing:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Remove the first volume by slicing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We start off with example time-courses from the first and second slice.\n", + "\n", + "Use slicing to get a z slice 0 time series for an example voxel at voxel coordinates (23, 19, 0).\n", + "\n", + "Do the same for a z slice 1 time series from (23, 19, 1).\n", + "\n", + "Plot these time series against volume number (TR number) on the same graph:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Slice out time series for voxel (23, 19, 0)\n", + "# Slice out time series for voxel (23, 19, 1)\n", + "# Plot both these time series against volume number, on the same graph" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The scanner collected slices for these data in an \"ascending interleaved\" order. That is, the scanner first collected z slice 0, then z slice 2, up to z slice 28. It then went back to collect z slice 1, 3, 5 up to z slice 29.\n", + "\n", + "That means the scanner started collecting slice 0 in each volume, at the beginning of the TR.\n", + "\n", + "The TR is 2.5 seconds." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# - the time between scans\n", + "TR = 2.5" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make a time vector, length 172, that corresponds to the start time in seconds of each volume. This also gives the slice 0 start times." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Make time vector containing start times in second of each volume,\n", + "# relative to start of first volume.\n", + "# Call this `slice_0_times`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The scanner starts to collect z slice 1 exactly half way through the TR. Make a new vector that is the start time of acquisition of slice 1." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Make time vector containing start times in seconds of z slice 1,\n", + "# relative to start of first volume.\n", + "# Call this `slice_1_times`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now plot the first 10 values for the slice 0 times, against the first 10 values of the slice 0 time series.\n", + "\n", + "To the same plot for the first 10 values of the slice 1 times, against the first 10 values of the slice 1 time series.\n", + "\n", + "Use the `:+` line marker for the plots to get the actual position of the points, and dotted lines betweeen them." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Plot first 10 values of slice 0 times against first 10 of slice 0 time series\n", + "# Plot first 10 values of slice 1 times against first 10 of slice 1 time series\n", + "# Use ':+' marker" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import `InterpolatedUnivariateSpline` from `scipy.interpolate`. Make a new linear (`k=1`) interpolation object for slice 1, with the slice 1 times and values." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Import `InterpolatedUnivariateSpline` from `scipy.interpolate`\n", + "# Make a new linear (`k=1`) interpolation object for slice 1, with slice 1 times and values." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Call the object you got with the slice 0 times, to get the estimated time series values for slice 1, if slice 1 had been collected at the same time as slice 0:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Call interpolator with `slice_0_times` to get estimated values" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Repeat the plot of the first 10 values of the time series. This time, on the same plot, add the estimated values for slice 1, if they had been collected at the same time as slice 0. Use a black `x` for the estimated points (marker `kx'`):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Plot first 10 values of slice 0 times against first 10 of slice 0 time series\n", + "# Plot first 10 values of slice 1 times against first 10 of slice 1 time series\n", + "# Plot first 10 values of slice 0 times against first 10 of interpolated slice 1 time series" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make a new data matrix to contain the slice time corrected values for all voxels. We want to keep the values for z slice 0 unchanged, so make the new data matrix by copying the old one (and therefore getting the slice 0 values):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Copy old data to a new array" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Loop over every x voxel coordinate, and then loop over every y voxel coordinate.\n", + "\n", + "For each x, y voxel coordinate:\n", + "\n", + "* extract the time series at this x, y coordinate for slice 1;\n", + "* make a linear interpolator object with the slice 1 times and the extracted time series;\n", + "* resample this interpolator at the slice 0 times;\n", + "* put this new resampled time series into the new data at the same position" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# loop over all x coordinate values\n", + "# loop over all y coordinate values\n", + "# extract the time series at this x, y coordinate for slice 1;\n", + "# make a linear interpolator object with the slice 1 times and the extracted time series;\n", + "# resample this interpolator at the slice 0 times;\n", + "# put this new resampled time series into the new data at the same position" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we need to do the same thing for all the z slices." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To do this, we want to construct an offset vector (call it `time_offset`) of length (number of z slices) such that adding the `time_offset[z]` to the acquisition time of the the first slice will give us the time of acquisition of slice `z`. The next few steps are to get to that `time_offset` vector." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, make a new vector `acquisition_order` that is length 30, where `acquisition_order[i]` is the order of acquisition of slice index `i`. For example, the first 4 elements of `acqusition_order` should be 0, 15, 1, 16." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Make acquisition_order vector, length 30, with values:\n", + "# 0, 15, 1, 16 ... 14, 29" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Divide the acquisition order vector by number of slices, and multiply by the TR, to get the time offset for each z slice, relative to the start of the scan:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Divide acquisition_order by number of slices, multiply by TR" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can do our whole slice time correction, for every slice.\n", + "\n", + "* For each z coordinate (slice index):\n", + " * Make a time vector by adding the slice time offset for this slice, to the slice_0 times. Call this the `slice_z_times` vector;\n", + " * For each x coordinate:\n", + " * For each y coordinate:\n", + " * extract the time series at this x, y, z coordinate;\n", + " * make a linear interpolator object with the `slice_z_times` and the extracted time series;\n", + " * resample this interpolator at the slice 0 times;\n", + " * put this new resampled time series into the new data at the same position" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# For each z coordinate (slice index):\n", + "## Make `slice_z_times` vector for this slice\n", + "### For each x coordinate:\n", + "#### For each y coordinate:\n", + "##### extract the time series at this x, y, z coordinate;\n", + "##### make a linear interpolator object with the `slice_z_times` and the extracted time series;\n", + "##### resample this interpolator at the slice 0 times;\n", + "##### put this new resampled time series into the new data at the same position" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Congratulations - you have just done slice timing correction on this 4D image." + ] + } + ], "metadata": { - "name": "", - "signature": "sha256:3461f19d4aa3477de91d2d540be5749504689528e34562609f3a6e20cc8b6505" - }, - "name": "slice_timing", - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# - compatibility with Python 3\n", - "from __future__ import print_function # print('me') instead of print 'me'\n", - "from __future__ import division # 1/2 == 0.5, not 0" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# - show figures inside the notebook\n", - "%matplotlib inline" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# - import common modules\n", - "import numpy as np # the Python array package\n", - "import matplotlib.pyplot as plt # the Python plotting package" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# - set defaults for plotting\n", - "plt.rcParams['image.cmap'] = 'gray'\n", - "plt.rcParams['image.interpolation'] = 'nearest'" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Load the image `ds114_sub009_t2r1.nii` with nibabel. Get the data:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Load the image 'ds114_sub009_t2r1.nii' with nibabel\n", - "# Get the data array from the image" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As you remember, the first volume in this dataset is a lot different from the rest, and this will mess up our interpolation in time.\n", - "\n", - "So, we need to remove the first volume from the data first, using slicing:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Remove the first volume by slicing" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We start off with example time-courses from the first and second slice.\n", - "\n", - "Use slicing to get a z slice 0 time series for an example voxel at voxel coordinates (23, 19, 0).\n", - "\n", - "Do the same for a z slice 1 time series from (23, 19, 1).\n", - "\n", - "Plot these time series against volume number (TR number) on the same graph:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Slice out time series for voxel (23, 19, 0)\n", - "# Slice out time series for voxel (23, 19, 1)\n", - "# Plot both these time series against volume number, on the same graph" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The scanner collected slices for these data in an \"ascending interleaved\" order. That is, the scanner first collected z slice 0, then z slice 2, up to z slice 28. It then went back to collect z slice 1, 3, 5 up to z slice 29.\n", - "\n", - "That means the scanner started collecting slice 0 in each volume, at the beginning of the TR.\n", - "\n", - "The TR is 2.5 seconds." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# - the time between scans\n", - "TR = 2.5" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Make a time vector, length 172, that corresponds to the start time in seconds of each volume. This also gives the slice 0 start times." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Make time vector containing start times in second of each volume,\n", - "# relative to start of first volume.\n", - "# Call this `slice_0_times`" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The scanner starts to collect z slice 1 exactly half way through the TR. Make a new vector that is the start time of acquisition of slice 1." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Make time vector containing start times in seconds of z slice 1,\n", - "# relative to start of first volume.\n", - "# Call this `slice_1_times`" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now plot the first 10 values for the slice 0 times, against the first 10 values of the slice 0 time series.\n", - "\n", - "To the same plot for the first 10 values of the slice 1 times, against the first 10 values of the slice 1 time series.\n", - "\n", - "Use the `:+` line marker for the plots to get the actual position of the points, and dotted lines betweeen them." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Plot first 10 values of slice 0 times against first 10 of slice 0 time series\n", - "# Plot first 10 values of slice 1 times against first 10 of slice 1 time series\n", - "# Use ':+' marker" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Import `InterpolatedUnivariateSpline` from `scipy.interpolate`. Make a new linear (`k=1`) interpolation object for slice 1, with the slice 1 times and values." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Import `InterpolatedUnivariateSpline` from `scipy.interpolate`\n", - "# Make a new linear (`k=1`) interpolation object for slice 1, with slice 1 times and values." - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Call the object you got with the slice 0 times, to get the estimated time series values for slice 1, if slice 1 had been collected at the same time as slice 0:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Call interpolator with `slice_0_times` to get estimated values" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Repeat the plot of the first 10 values of the time series. This time, on the same plot, add the estimated values for slice 1, if they had been collected at the same time as slice 0. Use a black `x` for the estimated points (marker `kx'`):" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Plot first 10 values of slice 0 times against first 10 of slice 0 time series\n", - "# Plot first 10 values of slice 1 times against first 10 of slice 1 time series\n", - "# Plot first 10 values of slice 0 times against first 10 of interpolated slice 1 time series" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Make a new data matrix to contain the slice time corrected values for all voxels. We want to keep the values for z slice 0 unchanged, so make the new data matrix by copying the old one (and therefore getting the slice 0 values):" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Copy old data to a new array" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Loop over every x voxel coordinate, and then loop over every y voxel coordinate.\n", - "\n", - "For each x, y voxel coordinate:\n", - "\n", - "* extract the time series at this x, y coordinate for slice 1;\n", - "* make a linear interpolator object with the slice 1 times and the extracted time series;\n", - "* resample this interpolator at the slice 0 times;\n", - "* put this new resampled time series into the new data at the same position" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# loop over all x coordinate values\n", - "# loop over all y coordinate values\n", - "# extract the time series at this x, y coordinate for slice 1;\n", - "# make a linear interpolator object with the slice 1 times and the extracted time series;\n", - "# resample this interpolator at the slice 0 times;\n", - "# put this new resampled time series into the new data at the same position" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we need to do the same thing for all the z slices." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To do this, we want to construct an offset vector (call it `time_offset`) of length (number of z slices) such that adding the `time_offset[z]` to the acquisition time of the the first slice will give us the time of acquisition of slice `z`. The next few steps are to get to that `time_offset` vector." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First, make a new vector `acquisition_order` that is length 30, where `acquisition_order[i]` is the order of acquisition of slice index `i`. For example, the first 4 elements of `acqusition_order` should be 0, 15, 1, 16." - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Make acquisition_order vector, length 30, with values:\n", - "# 0, 15, 1, 16 ... 14, 29" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Divide the acquisition order vector by number of slices, and multiply by the TR, to get the time offset for each z slice, relative to the start of the scan:" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Divide acquisition_order by number of slices, multiply by TR" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we can do our whole slice time correction, for every slice.\n", - "\n", - "* For each z coordinate (slice index):\n", - " * Make a time vector by adding the slice time offset for this slice, to the slice_0 times. Call this the `slice_z_times` vector;\n", - " * For each x coordinate:\n", - " * For each y coordinate:\n", - " * extract the time series at this x, y, z coordinate;\n", - " * make a linear interpolator object with the `slice_z_times` and the extracted time series;\n", - " * resample this interpolator at the slice 0 times;\n", - " * put this new resampled time series into the new data at the same position" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# For each z coordinate (slice index):\n", - "## Make `slice_z_times` vector for this slice\n", - "### For each x coordinate:\n", - "#### For each y coordinate:\n", - "##### extract the time series at this x, y, z coordinate;\n", - "##### make a linear interpolator object with the `slice_z_times` and the extracted time series;\n", - "##### resample this interpolator at the slice 0 times;\n", - "##### put this new resampled time series into the new data at the same position" - ], - "language": "python", - "metadata": {}, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Congratulations - you have just done slice timing correction on this 4D image." - ] - } - ], - "metadata": {} + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" } - ] -} \ No newline at end of file + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/day3/slice_timing_solutions.ipynb b/day3/slice_timing_solutions.ipynb index 0becd97..6cff361 100644 --- a/day3/slice_timing_solutions.ipynb +++ b/day3/slice_timing_solutions.ipynb @@ -60,7 +60,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": { "collapsed": false }, @@ -68,10 +68,10 @@ { "data": { "text/plain": [ - "(64, 64, 30, 173)" + "(64, 64, 35, 166)" ] }, - "execution_count": 5, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -80,7 +80,7 @@ "# Load the image 'ds114_sub009_t2r1.nii' with nibabel\n", "# Get the data array from the image\n", "import nibabel as nib\n", - "img = nib.load('ds114_sub009_t2r1.nii')\n", + "img = nib.load('ds107_sub012_t1r2.nii')\n", "data = img.get_data()\n", "data.shape" ] @@ -96,7 +96,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": { "collapsed": false }, @@ -104,10 +104,10 @@ { "data": { "text/plain": [ - "(64, 64, 30, 172)" + "(64, 64, 35, 165)" ] }, - "execution_count": 6, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -133,7 +133,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": { "collapsed": false }, @@ -141,18 +141,18 @@ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 7, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEACAYAAACznAEdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl4W9WZ/7/HsvbFlvc9jp3YJM5GgIRCAZedkpSWMlC2\nAEPX6fIbpkxLpy0knem0QzeGmYaZstOydOgCDWuB4kBYnJDEWRwSJ3Yc24rlVZYsWZul8/vj6lzf\nK10tlm1ZTs7nefzYOrrLkSyd73mX8x5CKQWHw+FwODnz3QEOh8PhZAdcEDgcDocDgAsCh8PhcCJw\nQeBwOBwOAC4IHA6Hw4nABYHD4XA4AFIQBELIo4SQAULI/qj2bxJCPiaEHCCE/DTSdikh5CNCyD5C\nyC5CyKckx68lhOwnhHQQQh6Y/ZfC4XA4nJmQioXwOIArpA2EkGYAGwGspJSuBPDzyFNDADZQSlcD\nuB3AbyWnPQTgTkppA4AGQojsmhwOh8OZX5IKAqV0BwBHVPPXAPyUUjoZOWY48nsfpdQe+bsdgI4Q\noiaElAEwU0p3Rc5/CsBnZ+k1cDgcDmcWSDeG0ADgQkLIh4SQtwkhZ0cfQAi5DsAeSmkQQCWAPsnT\nfZE2DofD4WQJuTM4z0opPZcQcg6A/wNQx54khDQB+AmAy2beRQ6Hw+FkgnQFoRfAnwCAUrqLEBIm\nhBRSSkcIIVWR526llHZHjrcBqJacXxVpU4QQwgsscTgcThpQSkm656bqMiKRH8YLAC4GAEJIAwB1\nRAzyAbwE4LuU0g8lHbQDcBJC1hFCCIBNAF5MdENKaVb93HffffPeB96nU6tfvE+8T7P9M1NSSTt9\nBsD7EDKDegghdwB4DEAdIeQAgGciAzwAfB1APYB7CSF7CSF7CCFFkuceBdAB4Cil9LUZ957D4XA4\ns0ZSlxGl9KY4T92qcOyPAfw4znV2A1g5rd5xOBwOJ2Pwlcop0tzcPN9diIH3KXWysV+8T6nB+5Q5\nyGz4nWYbQgjNxn5xOBxONkMIAc1AUJnDmRfeOfEOxv3j890NDue0gAsCJ6u59+178UHfB/PdDQ7n\ntIALAierCYQCCIQC890NDue0gAsCJ6sJhALwT/rnuxsczmkBFwROVsMtBA4nc3BB4GQ1XBA4nMzB\nBYGT1QRCAfhD3GXE4WQCLgicrIZbCBxO5uCCwMlquCBwOJmDCwInq+FZRhxO5uCCwMlquIXA4WQO\nLgicrIYHlTmczMEFgZO1hMIhhGiIWwgcTobggsDJWoLhIABwQeBwMkQqO6Y9SggZIITsj2r/JiHk\nY0LIAULITyXt3yOEHI08d7mkfS0hZD8hpIMQ8sDsvgzOqQgTAh5U5nAyQyoWwuMArpA2EEKaAWwE\nsJJSuhLAzyPtywBcD2AZgKsAbI3soQwADwG4k1LaAGE7Ttk1OZxomCAEwtxC4HAyQVJBoJTuAOCI\nav4agJ9SSicjxwxH2q8B8ByldJJS2g3gKIB1hJAyAGZK6a7IcU8B+Ows9J9zCsMtBA4ns6QbQ2gA\ncCEh5ENCyNuEkLMi7ZUAeiXH2SJtlQD6JO19kTYOJy6ihcBjCBxORsidwXlWSum5hJBzADwPoG72\nugVs3rxZ/Lu5ufmU3cOUEx8uCBxOYlpaWtDS0jJr10tXEHoB/AkAKKW7CCEhQkghBIugRnJcVaTN\nBqBaoT0uUkHgnJ6ILiO+DoHDUSR6srxly5YZXS9VlxGJ/DBeAHAxABBCGgBoKKUjAP4C4AZCiIYQ\nshjAEgA7KaV2AE5CyLpIkHkTgBdn1HPOKQ+3EDiczJLUQiCEPAOgGUAhIaQHwH0AHgPwOCHkAAA/\nhAEelNJDhJD/A3AIQBDAP1BKaeRSXwfwBAAdgFcopa/N7kvhnGrwoDKHk1mSCgKl9KY4T90a5/if\nAPiJQvtuACun1TvOaU0gFIAuV8ctBA4nQ/CVypysJRAKwKwxc0HgcDIEFwRO1hIIBWDSmHhQmcPJ\nEFwQOFlLIBSAWcstBA4nU3BB4GQtooXAg8ocTkbggsDJWpggcAuBw8kMXBA4WQsPKnM4mYULAidr\n4UFlDiezcEHgZC1Sl9HU+kYOhzNXcEHgZC1sYVpuTi4mw5Pz3R0O55SHCwInawmEAtCoNNCoNNxt\nxOFkAC4InKyFCYJWpeWBZQ4nA3BB4GQtMguBr0XgcOYcLgicrEW0EHK5hcDhZAIuCJysJRAKQKvS\nQqPScEHgcDIAFwRO1sKDyhxOZuGCwMlaeFCZw8ksSQWBEPIoIWSAELJf0nYfIaSPELIn8nNlpF1L\nCHmGELKfENJOCLlHcs7aSHsHIeSBuXk5nFMJHlTmcDJLKhbC4wCuUGj/JaV0beSHbYf5BQCglK4C\ncDaArxBCaiLPPQTgTkppA4AGQojSNTkcER5U5nAyS1JBoJTuAOBQeIootNkBGAkhKgAGCPstuwgh\nZQDMlNJdkeOeAvDZ9LrMOV2QWgjzIQiBUABP73864/flcOaLmcQQvkEIaSOEPEIIyQcASunrAFwA\n+gF0A/g5pXQMQCWAPsm5fZE2Dicu8x1U7hztxLde+1bG78vhzBe5aZ63FcCPKKWUEPJvAH4B4E5C\nyC0A9ADKABQCeJcQ8mY6N9i8ebP4d3NzM5qbm9PsKmehMt9B5VHvKEa9owiGglCr1Bm/P4eTjJaW\nFrS0tMza9dISBErpkOThwwC2Rf4+D8CfKaVhAEOEkPcgxBJ2AKiWnFMFwJboHlJB4JyezHdQecQ7\nIv4uM5Vl/P4cTjKiJ8tbtmyZ0fVSdRkRSGIGkZgA41oAByN/HwZwSeQYI4BzAXxMKbUDcBJC1hFC\nCIBNAF6cUc85pzzzHVQe9Y4CAIY8Q0mO5HBODZJaCISQZwA0AygkhPQAuA/ApwghawCEIcQKvhI5\n/H8BPEoIOQBBQB6llLZHnvs6gCcA6AC8IslM4nAUES2EnPkJKjNBGPQMZvzeHM58kFQQKKU3KTQ/\nHudYP4Bb4jy3G8DKafWOc1oz30HlkQnBZTQ0wS0EzulBukFlDicpoXAIAKDKUaV1fja4jNQ56oy7\njCil6Hf3AwDKTGXIIbygACcz8E8aZ8741Ye/wr+/++9pnz/fQeVR3yiWFCzJuMvo9+2/x5IHl6Bp\naxO+88Z3MnpvzukNFwTOnGFz2WB329M+fzbSTsM0jA3PbEhrC86RiRE0FjVm3GVkc9nwlbO+gt1f\n3o0n9z3Jy3ZwMgYXBM6cMeYfgyvgSvv82VipPOYbw8tHX8aR4SPTPnfUO4ozCs/IuCCMeEdQaChE\nnbUOTcVNePnoyxm9P+f0hQsCZ8ZQSvFB7wcx7Q6vAy7/7AhCukFlFhhus7fJ2gfcAzg2eizhuaPe\nUZxRdEbGXUYjEyMo1BcCAG5fczueaHsio/efCa19rQjT8Hx3g5MmXBA4M6bf3Y9Lf3tpTLvDNzuC\nMJOg8vDEMIBYQXi87XFsbtmc8NxR76jgMspwUJlZCABw3fLr8M6JdzDgHshoH9Llhj/cgI6Rjvnu\nBidNuCBwZozdbcdEcALBUFDWPuYbS1sQKKUIhAJQq9QzchmNeEegVWnRNiAXhB5nD46MxHcjBUIB\neCe9qLPWZdxlNDwxjCJDEQDApDHhkrpL8GZXWhVgMo474IYn4JnvbnDShAsCZ8awwPF4YFzW7vA6\n4PQ507pmiIagylEhh+RAq9LOyGX0yZpPos3eBkqp2N7j7EHHSIesLbrvVp0VhfpCOH3OGLGbS0a8\nUy4jACjSF8W8t9mKJ+jBRHBivrvBSRMuCJwZwwQh2hqYicuIuYsAzNhCWFmyEgQEJ8dPiu29rl64\n/K648YFR7ygKDYVQ5ahQoC8Q6xplgpGJKZcRABg1xgUx6w6FQ/BN+uAJZn9fOcpwQeDMGCVBmAxP\nwhPwzJogKKVejvnGsMu2K6Z9p20nxv3CjJoNrmvK1sjiCD3OHjQUNsR1G414R1CgLwAAFBuLMxZH\noJTGWAhGtXFBDLLMMlgI4sVRhgsCZ8YwQZC6h8Z8Y8jX5SNMw2nl0UsFIV5Q+Y3ON/DVl78a0/6d\nN76D1ztfByD44wv1ckEY94/DP+nHJ6o+ETcAOuodFQWhxFiSsUwjT9CD3Jxc6NV6sc2gNiR1w0yG\nJ2XiO+4fz6ibC4AoWtxltHDhgsCZMUoWgsPrgFVvhUVrSctKSMVl5PA5sH9gP7xBr6x9zDcGm0uo\nrs4yds4sO1MMLPe6elGTV4PGwsa46xOkglBsKM5YYJkJmJRUXEZ//vjP+NrLXxMf3/X6XXjmwDNz\n0sd4sD4uBGuGo8wpIQg3/vFGHB4+PN/dOG2xu+0oM5XJBv4x3xisutkRhHhBZYfXgcnwJPb075G1\nj/nG0OcSNugb8Y6gyFCENWVrxON6nb2ozqtGY1EjOkaVLQTpWoBiQ+ZcRtHxA0BwGSWbdQ9NDInV\nWQFB0AY8mU1VZULAXUYLlwUvCJRSvH7sdXw89PF8d+W0xe62o6GwQW4h+ObeQhjzjSGH5KDV1hrT\nbhuPWAiRgb2hsAHDE8MYnhhGj7MHNZYaIYaQgoUwFy6j+9+7X1FkouMHgOAySjbrdvqccAfc4mN3\nwA2HV2kr9NlhR88OvHD4BVkbEwLuMlq4LHhBGPGOwOFziBkklFK83MGX+mcSu9uOhoIGOP1TMQSH\n14F8XT7ydHmzIghKcQiHz4F1letkghCmYbj8rilBiLiMVDkqnF1xNnbZdqHXJVgISwqWoHusW7HO\nkcxlZFR2Gb3f+37alsMjex7BXvvemHZFC0GTPKjs8rtiBEFqMcw275x4B08feFrWJloI3GW0YFnw\ngsBmeKxccI+zB9c9f918dum0wO62g1IKT8CDQCiAmryaWAthtlxGcYLKDp8DV9Zfida+KUFw+V2g\noOhz9YFSKvPJr69cj1Zbq2Ah5NVAl6tDubkc3WPdMdce9Y3KXUYKgnDv2/fi+UPPT/u1sb73j/fH\ntA9PDKNIXyRri3YZKRUMdPoVLATf3FkI7oA7xroSYwhJXEZOn5NbEVlKUkEghDxKCBkghOyXtN1H\nCOkjhOyJ/FwpeW4VIeR9QshBQsg+Qogm0r6WELKfENJBCHlgtl5Ax0gHcnNyRQuh19UL36Qv4xkW\npxvXPHcN3ux6EwOeAZSZymIsAWkMQWo5pEqqLqN1levg9DvF0g5jvjEUG4phc9ngDrihIioxY0cq\nCNUWYYvveIHlkYmptNNyc7lsDQPDNm6LKYmRCpRSjPnGFK8pLVvBMKgNskF29f+sjhEFJUGYSwvB\nE/Dg6OhRWd2iVLOMfvj2D/Hw7ofnrG+c9EnFQngcwBUK7b+klK6N/LwGAIQQFYDfAvgypXQFhK03\n2cj8EIA7KaUNABoIIUrXnDYdIx04p+IcmYUAxK6a5cwudrcdH/R9IAaUoy0B5jKyaOY2qFygL8C6\nynXYadsJQBCECnMFDGoDjo4eFUtAABCPYxYCACwtWIqjo0djri11GdVZ69Dl6Io5ps/VF1cQDgwc\nwI1/vFHxOU/Qg8nwpLIgTMTGEKQuI2b1RJ+rGEOYYwvBN+lDr7NXbPMEPCmtmehz9c1p32aDf/7r\nP+PVo6/OdzcyTlJBoJTuAKD03yMKbZcD2EcpPRg510EppYSQMgBmSilbRfQUgM+m2WcZR0aOoLm2\necpCiHxAZ1JUjZOc4YlhtNpaZYIgiyFkIKjs8Amis75yvUwQ8nX5qLRUYv/Aftlsu9xcDqPaiE5H\nJ6rzBAuhwlyh6IKRCkK5qRzj/nFxsRsgfL6CoSDah9oVYxA9zh4cGDig+NpYsJdNYqQoWQhSl5F3\n0oswDcf02eV3wRPwiDP2ubYQ3EFBfKTrODxBD4qNxUkFwe62y97LbOTo6FF0OjrnuxsZZyYxhG8Q\nQtoIIY8QQvIibQ0AQAh5jRDyESHknyPtlQD6JOf2RdpmTMdIh0wQRAshyQfulaOvcNFIk4ngBLxB\nL1r7WuNaCMxlNJdB5THfGKx6KxbnL0aPq0dsy9flo8pShX32fTGz7fVV61GoL4RBbQAgbFEZPbiO\n+8cxNDEkDsyEkBgroc/Vh9r8WlSYKxQXt7n8rriz4DHfGADEdRlJrRpA7jJi76WSy4iCwhv0IhQO\nwTvpndMsI0/AgwpzhWyltyfgQYmxJKnLyO62Z70F7wl6xP/T6US6eypvBfCjyOz/3wD8EsCdkeud\nD+BsAD4AbxFCPgIw7RFh8+bN4t/Nzc1obm6OOSYUDqHT0Ynzqs+D0+dEIBRArys1C+Gbr34TD139\nEC6vv3y6XZsxlFKccJ5AbX5txu89GwxPDKPSUglKKd7vfR9LCpYgT5sXE1TO1+XDorUoDnzJSBZU\nZn74fF0+Sk2lYlooa8vNycW+gX0oNhbLzltfuR6do1Mzv2hB2N69Hbe9cBtuXXUrzBqz2F5fUI9O\nRydWl60GIOxqVmWpglVvRZu9DcuLl8vu4/K74g7IDp8D5aZymYVw3HEci62L4y9MCyYRhMgqcXfA\njRANwaA2YDwwjlA4lPae1olwB9xYW742xkIoMZYkzLyilMLutsvcW9mIJ7AwBKGlpQUtLS2zdr20\nBIFSKv2PPwxgW+TvPgDvUEodAEAIeQXAWgBPA6iWnFMFwJboHlJBiEePswfFhmKYNCaUGEtgd9vF\ntkSC4PQ50eXomrd/+JGRI7jst5eh967e5AdnIaw8c521Di8ffRk/ueQnijEE5jKai6CyO+AWN88p\nMZbIgsr5unzk6/Lx58N/xg1NN8jO29iwEUTi7YwWhDtevAO/uPwX+Pzyz8vOq8uvkwlJn6sPlZZK\nNBQ0oM3ehptW3iQ73uV3wTvphW/SB12uTvacw+vA8uLl2NGzA5RSdI91o/G/G9H/7X7FtFNWuoJS\nmtBCyNPmiYJg0VqgVWkx5huLud5s4Al6cNGii2Qpv56AB8WGYsWsLcZ4YBzeSS+3EGaJ6Mnyli1b\nZnS9VF1GBJKYQSQmwLgWwMHI368DWEkI0RFCcgFcBKCdUmoH4CSErCOEEACbALw4o55DGFgbChsA\nTGWC9Lp60VTSlPADt39ASJiaS5M6EXa3HX2uvgW7Vy4ThPWV6zHmG5uKIUTVMpqttFMmCNJS1ez6\nAFBqjLUQKs2VGPWOxrhfGosa8e3zvi0+lgpCKByCbdyGDQ0bYvrDLASGbdyGKnNVTNE8Bvv8KX3G\nWOBbr9bD4XPg4OBBBMNBPHvwWcWFabk5ucjNyYU/5BddoVJBoJRi3D+OCnMF3AE33AE3TBoTrHrr\nnMURmIUgcxkFk7uMxFLpWR5DWCgWwmyTStrpMwDeh5AZ1EMIuQPA/ZEU0jYIg/5dAEApHYPgPvoI\nwB4AH7EMJABfB/AogA4ARyXtadMx0oHGwkYAQnDw2OgxTAQnUJdfl3AQYl/g+cp0YCY1i3csNJgg\nrKtcBwDKWUYSl1HagpAjCEIOyYEqRyUL3rKgNSAsHBv0DMrcSFWWKgCIGVyjKTYWY8Q7glA4BLvb\njgJ9AbS52pjj6q1RguCyodJSKQpC9L4K7DUrDchsjUa5SZjEtA+1Y3Xpavxm92/gm/TBorXEnGNU\nG8XqsRatRSYInqAH2lwtrHqrTBAK9AVz9hl3B9xYUbIC/eP98E36xH6UGEsSrkOwu+3Q5+q5hZCl\nJHUZUUpvUmh+PMHxzwCIqapFKd0NYOW0epeEI8NTFkKFqQKtfa2otlQnDWS22dtQm187bxYCW+TU\nPdaNpYVL56UPM2F4YhjFhmKcXXE2ckgOykxlMKgNCIQCCIaCUOWo4PQ5hZXK2pkHlQGI+yqrVWoA\nU2mtAKDL1cGgNsDhc8iyjAAkdZfk5uSiQF+AoYkhWTpqNPUF9XKX0XgfrlxyJSrMFaCgODl+Urwn\nMCUISgMy63uFuQInx0/i0NAhfGPdN7Bl+xYU6gshGNFymNvI5XehobBBJghOnxMWrQUmjUl0GZk0\nJuhz9eJn/Nc7f40TzhMoNZbKLKR08QQ8yNfloza/FsdGj2FFyQrRZZQoy8jutqO+oJ5bCFnKgl6p\nfHzsOOqsdQAEl1GrrRU1eTUwa8yJBWGgDc21zfP2D2fujUS+1mxmyDOEIkMRTBoTXrjhBdTk1YAQ\nAovWgvHAONwBN/RqPdQqdUILIVH9qWhB0KrkgWWpywiAGFiWuoyA5BYCMOU2YlVQlajNr4Vt3CYu\neGRBZZaBxJIZGGwGrGQhsOyocnM5+sf70T7UjpUlK7Fp1aa4AsYCyy6/C0sLlsoFIRI/YIIgtRBG\nvaMIhUP49l+/jQJ9Ab775ndli8nShd2jobBBDCyztFMW71DC7rZjacHSObUQxv3jYrXbdKCUnrYW\nwoIWBOkXuMJcgTZ7G6rzqoWBKc4MJBgK4uOhj3FhzYWy2Vu8D3CqUEpTvsaQZyhp8C2bke75u7Fx\nI3KI8DFicQS2/aS0LRqH14GmrU1x3WZKFoJUEKQuIwBiYJkJQoG+ALpcXUoBVSYI0hXM0WhUGpSb\nysX+sqAyAHHgleLyu1BiLFG0QpnLqMJUgT5XHw4PH8ay4mX4ytlfwR1r7lC8P3MZjQfGUW2pRiAU\nEF0zTp8TebpYQbDqrHD4HLCN21BoKMQ9n7xHyD5KcXYe7/McCAUQpmFoVBrUWetw3HEcgDCrztPm\nifEOJZggzGWW0XMHn8P33vpe2uf7Q36EaZgLwkKjx9kjLjAqN5UjGA6ixlKTcFZ6ePgwFuUvQqWl\nUhQET8CD2v+snVFf3uh6A1/44xdSOnZoYgjrKteh29k9o3vOF8Pe4ZhgLQDxfWfxA2lbNIOeQVBQ\n/HbfbxXvES0I+bp82azP4XUgX5svPmaBZSYIhBBcsvgSLMpblPT1iBaCM76FAEwFlv2Tfjj9TpQY\nSwAIVsjIhHyLTZffhUV5i+LGEJjL6IO+D1CoL4RFa0FNXg3uPu9uxXtLXUZ5ujyUmcrE8tYuv0uw\nENTKFkLnaCfqrfUAAKvemnJcYeVDKxVn2p6AByaNCYQQIc004gL1BD0wqA2ieCnBXEYTwYlZsVSU\ncPgcMwqmsxXXY76xGU8UFxoLVhCcPidC4ZA4E60wVwAAqvOqYdaa4QooC0KbvQ1rytYgX5cvzgD6\n3f3ocfbMKOvn0NAhsQZ/MgY9gzin4pwFYSHstO3E9978nuyLIbUQpLDBn7lEAMG/H6KhmPd20DOI\nPG0entj3hOKXLloQPr/s87INX6T3ACIWgmfKQgCAl256CaWm0qSvscwYsRBc8S0EIBJYHu3EyfGT\nKDOViZZRPAthUf4ixcFX6jJq6W5BU0lT0j5KXUYWrUWWHeX0y2MI7oAbJrWQZeTwOtDp6ER9QUQQ\ndNaUYmeUUnSMdODY6LGY55jgAPK9IjwBD4waY8Id3uxuu5Bhlaufs30TxnxjMwqme4JCfESbqz3t\nKrcuWEFgJYxZAI4JQk1eTUKX0V77XqwpXSP7YjCf/kw+RN1j3SkHqYcmhnBOZWqCQCnFf7X+V8xs\n6tDQIbzZ9WY6XZ0We/r34Kfv/RRPtD0htrGgcjQsmC8N+BJCkKfNi/EZD00Mobm2Gbk5uXi/9/2Y\na0ULwm1rbsPTB54WffjM7cKIthCmg9RllNBCsNbj4+GPYRu3iTEKQFkQxv3jqM2rVbYQIi61CnMF\nPEEPlhctjzkmGmmWkVljlguCL0EMwRdrIaTiCnH6nQiGgzGxEUAYMI0aI4BIhtfE4FS72piwXDdb\n2W7WmtOKI/zlyF+SZucxt2W6MGGTThpPFxauIESZ98XGYqiICtWW6rhuijAN44XDL+Cy+stkpjNb\n1DSTD1H3WHfKgjLkGcKasjUYnhhOapX0unrxrde+FWO6P3fwOTz00UMJz6WUplWNU4rL78Knl34a\n33nzO2gfbBf7H89CcPqd+Hj4YywtWCprd/ld6BjpQCgcEq9RYizB7atvx+NtsUlr0YLQUNiAJQVL\n8NoxIVtZ6pYCBAuhf7wf7oBbMW0zEVKXEXNBKnHd8uvw7MFnse3INjGtFRBcRtOxEFjfy03lAJCS\nhcBm3eOBcUULIW4MgVkIEUHI1+Wn9DllkySlwVdqIUhXJk8EJ2DUGBO6jFh1XLPGnFam0a93/Rov\ndbyU8Bin36k4kB8cPJhS7IIJWyYF4e3jb4vj0HyyYAUhOgCYQ3KwpXkL6qx1cQXh3RPvwqQx4cyy\nM5GnzYPT50SYhmWLmlJBqdBa91h3wvPZwB8KhzDqHUWJsQRVlirZF24yPCkOmAxW6z+6Xk77UHtS\nC+PY6DFc+tSlCY9JhsvvwrmV5+Kuc+/C1l1bQSlVLMAGQKxs2mprxfrK9VPtWgt6nD1Y/8h60aoZ\n9Ayi2FCM65Zfh1ePxVaVjBYEALh9ze14Yt8TAGJdRqWmUhwdPQqTxiS6clKlzFSG42PHxUBwPOoL\n6vHglQ/i/vfvj7EQRrxTMQRKKcYD46jJq0maZQQgpuyFEqyKqJLLSIwhxMkySsdlxL4T0mqmDBZD\nAKb2iqCUCoKgju8yCtOwOBEwa81pBZYdXodi7Sgp8VxGX/jDF7DqoVVo6W5JeH4qFoJSQcOZcG/L\nvUlfVyZYsIKglCL4/Qu/D22uNm7a6RP7nsDta24HIQRqlRp6tR7ugFsMzqU6w1+xdQVOjJ2QtXWP\ndcM36RMX6USzfOtyHB05ilHvKPJ0QiZGbX6tbFC/+693Y+uurbLzWm2tyCE5MR+WQ0OHkgpCj7MH\nDp9jRsG7cb8wI22ubUarrRVOvxMGtSFmsAamMopa+1qxvkouCP/6zr/K9joemhhCsbEYddY6eAKe\nmPo33qA3ZoHY9U3X443ON0S3VLTLqGOkY9ruIkAQhH32fai0VCYVkxtX3oh7zr8Hn6j+hNgW7TKa\nCE5Al6tDsaE4ZvANhAIIhALiwHlF/RVoKk4xhsBcRtpYl5EYQwjGrlSWuYx0qbmMhjxD0Kq0YtFA\nKe6AG0a1xGXkGYRv0gd1jhqqHFVcl9HIxAgsWgs0Kg1MGlNaLqMx31jSgdPpdyp+F+1uO3544Q+x\n8dmNCd8DJmzxBOE3u3+DS566ZNp9T0Q6rs65YMEKQiJ/L8uHl+IOuPHC4Rdw88qbxTY2WxJjCCnM\nnFhBvcMJTiBbAAAgAElEQVTDh8W2Md8YwjQcN82wz9WHLkcX9g3sw9DEkDgLrc2TC0KrrRXtQ+2y\nc1ttrbi8/nJZiQD/pB/HHcfhDXoTrrfocfYgTMMzWgTkCggD0JllZ+Lj4Y/R6+xVjB8Awvt+cOgg\nCCEy682itaCluwXXN10vbm3J3gdCCFaXrca+gX2ya4355esM2HXOrzkfrx97XTHttN/dn7Yg+EP+\nhPEDKT+59Ce4vul68XG0ILBZvFLpCBZfYbGv1255DWatGcmQZhml6jIq0Bfg+NhxsY/A9FxGq8tW\nK1oIUpdRnjYP/kk/RrwjYlwheoc3BosfAIhxGYVpGBuf3Zh05u3wOWTfBSVYmrN0MA+GgnD6ndi0\nehOqLFUJCy6yGImSILTZ23D3X++OmRDOFC4IM6TX1Rs3I8SsFSwEafbKMweewQU1F8iyTlgcYcAz\ngCJDUUozp0HPIMI0LCtj0D3Wjdr82rizL+b2aR9sF10lAGQWQigcwv6B/bLrBkNB7O3fi5tX3iyb\nFXWMdKA2vxaLrYsTfjBZQHAmKXhsANKr9VhWtAxvdL2hGD8AhKDym11vYn3letlq2zxdHm5ZdQs+\nVfsp0UKQvg9rSmPrAY16R2UDPmNjw0Zs69gW8wVi/9d0vlT5unxoVJqEGUaJKDQUxgiCWWNWLB0R\nvaAuVZjLiFlsMYKg4DKy6qyYCE6gvqBe/H+wzKNkDHoGcVb5WYoxBGlQmRCCYqOwpoZZDdE7vDFk\nghAVVO4f78dLHS8lrZTKrEz/pB+UUtz/3v0xbtYx35hslTYAsYqsKkelWPJc9voiaaf5WrkgTIYn\ncf3z1+Pnl/9c5iKcDscdx/F8e+y2q9JEjPlkwQpCIgtBo9JARVSiydjl6MIP/vYD3HvRvbLj2Axg\nwD2AxsLGlGZOrGSxtIyBKAhxcrxbba04o+gMtA+1C4vSjBJBiKxFODZ6TBAayXUPDh5ETV4Nzqk4\nRzYrOjR0CMuLl8e4nKJhX+aZZE8xQQCEHcdePvpyXEFgNXZYjSPGDy74AX5+2c9Raa6cshAk74NS\ngTi2G1o0Gxo24JWjrwiCIRlYzRoztCptWl8qQgjKTGUpWwjRRMcQRAshMkGQTkyiLZtUkbqMYgQh\nsjDNqDHKBIG59thqfgDiYrVkDHoG0VjYiMnwZIwVytJaGWyRpdRCUHIZJbIQ2ESIuW+VYBVuF+Ut\nQpejC8fHjuO7b3435hyn3xkT0B/wDIiWeVJBiBNUZmW7v7T2S/BN+hRjicn4oO8D/GbPb2RtwVAQ\nvkmfaHXNJwtSEMI0LJYOiAcLLPsn/bj++evxgwt/gLMrzpYdI3UZNRY2pjRzOjl+EjkkB11jU5ul\nMEHI1+UrXmOnbSf+fs3fC4IwMYQSg/DBXFm6EjttO8VsoEsWXyIrj9BqE3zxddY62Fw2MTDdPtSO\npuKmGJdTNL2uXuSQnBlZCGxGCgh7Cbxz4p2EgsCOk7KseBmKjcWoslTJYgjsC6okCNEDPqMmrwaV\nlkqEwiFxkxtAGNRLTaVpz7LKTGVpWwh52jyM+8fFmSrLBFKr1NDl6mQz4ejYR6qw/Q28k14Y1UZU\nmCvE2k1MJKItBEIIrDqrGD8AkHLmzODEIEpNpajOqxbdRiwILHUZAYK7TmohGDVTLiNpFt2Onh1Y\nWSKUMzNr5BYCmwgx960SzLpqKGzAkZEjYnBYmp0TpmG4A27U5NXIXuegZ1C0Itm6k3jECyqPekdR\naBBqTRXoC9LKSvQEPBieGJa1MZefUg2rTLMgBWHQMyi6MeLB4gjPH3oeebo8fHPdN2OOkbqMzig6\nIzULYbwfq0tXK1sICrOvUDiE3f27cevqW9Hl6ILNZRNnxqtLV8M36cORkSNos7dhXeU6VJgrcMIp\nuIFYto5apUZNXo24Y1f7UDuaSppSshCWFiydUTotc38Awm5jk+HJhIJAQHBO5TmKz1daKmFz2RCm\nYdnituXFy9Hp6IQ36BWPdfiULQRAcBtJ/fCMEmNJ2oJw6eJLYyYMqaLKUSFPlycOHlKrKjqrJ11f\nsVFtxIBnQBzoNSoN1leux46eHXFdRoDwGZcKQqorlQc9gygxlqAmrwY9zh4hUeARQejZgMkoNhbj\nuOO42MZcRkdHjqLmgRo4fU54g148f+h53LLqFgAQ+8oQLYQEqZfMumosbETHSIcoCNLB3eV3waQx\noVBfKHvfB9wztxCk26pGW4Wp4gnGCkK2xA+ALBaEy397edyMnWT54sCUhcDqFimpb742HwPuAbgD\nbiy2Lk5p5nRy/CQ+WfNJdDm6RFdAohhC+1A7Ks2V4gz0g74PRN85IQQblm7AtiPb0DYgrKBmq2EB\n4MO+D0X3S2NRo+g2krmM4pS/oJSi19mLNWVrZs1l1FDYgDxtXtygcpmpDGvK1sRdB1BkKMJ4YBx2\ntx1GtVG2I1pDYYMYUE9mQn/ujM/JKosySo3pWwg/vuTHOKvirLTOBeQDBMsEYu1SCy16QV2qGDVG\n9I/3y97b5tpmtHS3xK1lBACV5krZOofppJ2WGEtQbalGr6sXLxx+QfzMR1sIxYZidDslFkLEZXRw\n8CAGPYN4sPVBvHD4BayrXCf+38zaWJdRkaEoocuI+dkbChtwZFiwED5R9YmYyq952ryYydmAZwCl\nxoiFkEoMIY6FwARBae1JKrCMuui9PbggJOGNrjcUi6IBieMHDBZYPjJyBI1FjYrHWPVWdIx2oNhQ\nnHLt+H53P5YVLYMuVyd+eBO5jKQpmMuLl+P93vdlue4bGjZgW8c2saQGq7s/6BkUrREAaCgQqkqy\nDKPGwsaEFoLD54AqR6VYT+evnX/FW11vJX2tgFwQckgO1lWui2shrChZgQ+/+GHca+WQHFSYK7DP\nvi8m31/qNmKDZjwT+qyKs9D6xdaY9jJT2bx9saQD/7h/HBZNxEKImpGzneSmi0FtgN1tl23rKQpC\nlIUwHhgXB+xXbn4F51WfJ56TsssoykLY1rENvkkfHD4HPEGPsstII3cZHRk5gmsar8GDOx/Ef+/6\nb9y+5nbxHCWX0XnV56XsMnqj6w1MhidxQc0FMZVf83X5McHzQc9g6oIQx0IYmZjavEhpdXoqeIIe\n+EN+WYxlQQkCIeRRQsgAIWS/pO0+QkgfIWRP5OfKqHNqCCHjhJB/krStjWyq00EIeSCVznknvYrt\niTKMGKx8RcdIh7hnQjRWnRVHho+g1FSa8szp5PhJlJvLZfXxEwWVW22tWFchzPKbipvgD/ll+/xe\nvPhi7LXvhX/Sj2pLNeqswlaN27u344JFF4j74TYWNeLI8BEcGDyA2vxaaHO1qM2vjZtlxFZyK/k6\nH9v7GDZv35z0tYZpOObL/9DVD+Hvmv4u7jlK6xOkVJorsde+N2avY2mmUbwMo2T3ufeie7Fp9aaE\n580V0hmjVESjB46ZuIyYq5SxrnIdjowcAaUUulwdNCoNCIiwTiAyOEe/T+wzmqho22R4Eg6vA4X6\nQlRbqvHOiXcwNDGEM4rOQJ+rT7YOARAshB5nT0yWUcdIB65eejU+vfTTaB9sxzWN14jnRGcZdTo6\ncV7VeYktBOYyKmpEr6sXzbXNKDeXywb3Md8Y8nR5MYP5tIPKSSyEAn1BTEFDxo6eHXFXarN2qdto\nQQkChM1wrlBo/yWldG3kJ3r3s18AeCWq7SEAd1JKGyDsvqZ0TRnxCmSdGDuR1EKwaC0Y843h2Oix\nuIKQr8vHkZEjKDGWpFzj5eT4SVSYK8SZPFuDYNVZFV1G+wf248zyMwFMlSiQulz0aj0uXnwxziw/\nE4QQsaJmS3cLmhc1i8c1FDbg9c7X8emnPy3GQ4oMRcL+tArrDNhKbqVc+DZ7G3badioWLpPiCXig\nz9XLNmmvL6ifdmkIKZWWiCBEuZ3OKDpDTK2Nl2GUDCaA84F04E8UQ5iJy4iCyt57jUqDc6vOFWI3\nEWvKpDFBl6tDbo7y3le6XB1ySE7cyRYgzISteitUOSrU5NXg3Z53cfXSq1GTVwObyxbrMjIWYzI8\nGeMyYlvc/vjiH+Oxax6TxfykWUZjvjH4J/1YUbIioYXAKtyWm8phVBvRXNssDO6e5C4jWVBZIgiU\n0pjvh5h2mkQQlCwE/6Qfn3n2M3i3513F18AsgxhB0C4QQaCU7gCgNHVWtOcJIdcA6ALQLmkrA2Cm\nlO6KND0F4LPJ7i0NMkrpdnZjcf7ihOeaNWa0D7XDqrfG9UWzwZL5nlN1GYmCMNqJt4+/jZWlK4WM\njigLgVIquKwi23yyEgXR7pIvnvlFXLfsOgBTWzW2nGhBc22zeMzq0tVYW74Wr9/yOr6+7usAhBhE\nbX6tGISWwlZyR7vCPAEPepw9+NLaL+HJticTvlbpwDZbVJmrsLd/b8x7UGGuEFN642UYZTPSGaM0\nhmDVyQX54+GP00pvZRlV0YvYmhc1I0+XJz42aUxJ0xfjZcMxmLsIgBir29iwEZXmSvS5+hRdRgBi\nXEYdIx1oLGpElaUK1y67VnYP6UrlzlGhtEapqTRhUJmV/CCEYNPqTbhqyVUxs302247+LkqDykWG\nIjh8DgRDQWw/sR2fePQTMospnoUw4h1JGkPY1rENDp8jrgUSVxAWkIUQj28QQtoIIY8QQvIBgBBi\nBPAdAFsgF4xKANLa0H2RtrioiCruLIa5aBJh0Vrw0cmPxMFYCekm7RatBZ6AJ2aRi5RQOCT6IusL\n6nHMcQw/eudH+M553wEQ+0Ub9AxCnaMW6/6cUXQGyk3lMXWANjZuxNfO+RoAYQbeMdIBm8uGNWVr\npvqqt+IvN/5FtDYY8eIILM4SPSAdGDyAZcXLBEHY92TCshYsfXI2qbRUotPRGWMhsN3DgPRz9ecT\nWQxB8r5JBfnY6DEcGz2GixdfPO3rs9l39P/jiiVXyNKvUxGEaEv2qX1P4cHWB8XHMkGwVKPMVIZL\n6y5FlaUKtnGbzCUFTFm8UpdRr6sX/km/6LePRlrLiBXfYxVr4yG1rrZevRXVedUxgsDiKUouI9YX\nVY4KRYYiDE0M4aOTH6FjpEO2zodZCCxzjInFqHdUFkNQyjJ6ou0JVFuq4wtC5NrSBXingiBsBVBH\nKV0DwA7g55H2zQB+RSlV9vVMgxUlK+JbCCkKwu7+3XHdRQDEQafEWIIckiO6meIxNDGEAn0B1Co1\n6q31eOHwCyAg+EzjZ4TrRX3RouMXulwdbP9ki2vOs35btBZZ/CARtXm1shRYBouzRM+U2uxtWFO6\nBqvLVqPQUIh3TrwT99rSme5swQav6BhCkaFIXDcy6h1FgW5+XD/pkiiGwCy4J9uexM0rbxb3hZ4O\nbABmwWrG2RVno+W2FvFxSoIQ9ZnYfXI3DgwcEB9LBUGv1sP2TzaYteYpCyHgiXEZSftoVBvRPtiO\nxqLGuIkBUpcRq7XE6iLFi28oTRRiBCGScSV11VFKZQshpee12dtQqC+UVVBlFoJGpZHtiZDMZdQ/\n3o/3et/Dl8/6ckILYVH+olPLQqCUDtGp/9rDANjS1PUA7ieEdAH4RwD/Qgj5BwA2ANIocFWkLS7e\nN7x47FePYfPmzWhpaRHbx3xjmAxPJvUVs8E9kYXA/gnSsgeJBOHk+EmxZDHb9Wlz82Z5WQDJF00p\nwymVxSf11npZ/CAR51Wfh791/018/OrRV2W1/aM/uCybCQDWlq1NGEeYC5cRqxIa7TLKITkoM5Wh\n392fdibOfML2HgDkazc+t+xzePfEu3j16Kt4ct+Tskyb6cBcRkr/D+lnKh2XkW3cFuNvZ4snAYgF\n/6QWgvQeedo8qHPUsoVpwXAw4WRMGlRm1Vh1uToY1Ia4rlulgZPVUmLxRiWXkcPngEFtgC5XJ54n\nFYS7zr0L2zq2ic+xWTx7r9iYIEs7NcS6jJ4+8DSuPeNa1FvrE1oIi/JmTxBaWlqwefNm8WemxJ+q\nyiGQuIAIIWWUUvaKrwVwEAAopRdKjrkPwDildGvksZMQsg7ALgCbAEzZqAqsuXENPnvGZ3HDihtk\n7SfGTqA2vzbpwMq+kAktBInLCEi+aKd/vF/ciKfcVI7ffe532NiwUXw++ovWMdKBhoL494/HDy/8\nIdaWr03p2CuXXImvvfw1eINe+CZ9uP4P18OgNsA36RNdRtI+tdnbxAJ/yerazIkgRPLQldYyMLfR\nqHcUi62JY0TZhjSGIHUZlRhL8Ltrf4cNz2xAQ2EDVpWuSuv6uTm50Kg0SS02k8aU1LKMtmT7XH2y\nVd9SC0FKpaVSMcuI1TOSLkwDkPCzb9KYRAuhy9ElFgssMZZg0DOoOOFTWuXNyo4MuAew2LoYTr8T\nSwqWyL6L0oAyo8xUhuOO4+hydOEb676B+9+/XxzwpbWamCBUWapkZd+VLIRtHdtwz/n3QJeriysI\nE8EJnFl25qwJQnNzM5qbm8XHW7ZsSes6jFTSTp8B8D6EzKAeQsgdEKyA/YSQNgAXAbgrhXt9HcCj\nADoAHFXITJKhz9UrZhml4i4CIFtMFfceaj20Kq344U+Weiq1EAghuHnVzTJhsmgtmAhOiBUbE62B\nSMTVDVeLtfKTUWgoxJqyNXi7+238vv33uGrJVXj5ppdx9dKrUWWpgkVrgXfSi2AoiFA4hAODB8RB\nKTq+EI20bMVswQQ12mXEnjs5fjLtTJz5RDpjjBbS5tpm/Oyyn+H7F3x/Rvcwqo1J/x+pxhCkE59o\nC0FaVkRKlaUKNpctJqgMCAIvzTICkPCzb9KYMBGcQDAUxP6B/WLCRaLAcrzYUnShv3xdvuy7KA0o\ni+cYy/DW8beExZa6PDTXNuPVo8K+HFILochQJMY1Eq1U9ga92H1yNy5YdEHCtFZP0IPa/FoMe7PT\nZZTUQqCU3qTQHLvFVex5W6Ie7wawMtWO6XP1ikHl7rFu1ObVJj3forUgNyc36UyzqaRJzKRIxWXE\nBjQlWBzC6XOi0FCYcA3EbLKxYSO2HdmGvfa9uPeie3F2xdl45vNT+w/naYXg2Ih3BGWmMjErpUBf\noLhFIkPq+pgtNCoNVpeuVqxDVWESMo2kX7yFQry0UwZLGpgJBrUhJUFIaiFILMNQOIT+8X7ZPhDx\nLIRCfSEmghMI03DM+oZlxcvE7wabXSf67OeQHBjUBrzZ9SYqLZXi5yFRYDleRVDpAMzWIUi/i9JF\nadJzfr3r12L209VLr8Zfu/6Km1fdLLMQ6qx16HJ04RNVQiaSPldInY22ED7s+xArS1fCpDGh1FSa\n2GWUvwgvH31ZbFtQgjBf6NV6xaByqhaCVW/F0oKlCQO4ALD7y7unzklSCbLfPbVyONF9HT4H8nR5\nOO44LqsjM1dsbNyI9Y+sh0FtwOX1l8c8zzJd2uxtsv4nc5HNhcsIANq+qrytZ7m5fMpCWIgxBMlK\n5dkOxgPCQJtMoE0aE1QksSDk6/LFSrgDngFoc7Ux2XFKgkAIQYW5AqPe0RiX7bOff1b826A2QJ2j\nlm2jqoRZa8azB5+VuV1LjCVxF6fFKx2utL80e52sVlmMhWAqw3hgXIynrSpdhUf2PILJ8CQmw5PQ\nqoTNmVh6ubSwHSC4pFnFU41KI1s3ZNVZ4Z30whv0xtRb8wRnN4Yw22Rt6Yq4FoIzNUFYW74Wr94c\nuzVjIpL51HtdvUldOcx32T3WjXJzecICfLNFY2EjSowluHXVrYoCyNZb7LTtxDkVU4Xnki2/nytB\niAdzGS1ECyFflw+X34Uhz5BYkXS2mU2XEbOEbS4bGgsbRfcNEF8QAMFtlOz6uTm5OPrNo0lF0awx\n48+H/ywThFKjssvIP+nHZHhSFutgKLmMAIiLTQfcA4oWAgBREFgFVU/AA4PaIA78bF2QdA0CALHi\nKfv+bD+xXVw3RAgRXkeUsLFtRk+5LKNMYFAbZmQh5JAcLMpfNK17shlFMBSMMVv/dvxv2NO/R1YX\nRgn2ZcuUuwgQPoCPfeYx3H3e3YrPs/IVrJy2tK+JBHAu1iEkotxUPpVltMBiCDkkB3edexdWPrQS\nZo15TkoZ/9vF/5a0AN+NK25MWr5Dahn2ufpQnVctc5cmEoRKS2VKdftT+e6ZNCYY1UZZdVwWVI6G\nWY1K76uSywiQl7dXshAAiBZzgb4A6hw1uhxdMjFnlQOUJilMEHyTPnx08iOcX3O+Yp8YbJvRYkMx\nRr2jCNNwVu2FAGS5y0hp4UeqgpAOVp0VPc4e/Os7/4rtJ7Zj++3bAQjldW/986146rNPJdyEHZj6\nsrGZV6a4YNEF8fuks2LAM4A2e5usxHMqFsJsxxASIbUQFprLCAB+dvnPcHXD1bKc9tnk00s/nfSY\nZcXLkh4jzcCxjdtQZa4SP7cmjQn+kD/uRKDKXDVrm8GbtWZcXXa1LH5RaoqdWQOJZ9HS8hVSl5FV\nb8WRkSN4+ejLuHPtnbJzFuUvwv9b//9kn7PGokbste+VLbpjLiNpYTsG+/4MegbF+IGsT1GCwGIT\napUaZq1ZLHuTLXshANksCLmxMYRU1yCki1VvRZejC3849Af4Jn2YCE7AoDbgX976F2xatQmX1V+W\n9Br52nyMekfx0tGXcOOKG+ekn9PFqrNi+4ntWJy/WPZFn68YQjwqzBXocnQhNydXljO+kGiubZaV\nHMlG2P7TgGAhVFoqxcFNl6sT97pWIlULIRUaChpiCiXGCyonshrZ4BsIBRAMB0W3Ur42H/e8eQ/+\n8dx/jNnFT5erwwNXymtsNhQ2YE//HpmFwMaaY6PHYsadQn0hRiZG8EHfB/hU7acU+yRFmr1UbCjG\nkGcIqhxV1riLgCx2GenVekxMytNOU12DkC75uny80fUGPnfG57CqdBU+7PsQoXAI2zq2pZwlYtVb\ncf9798M/6cdtq2+bk35OlwJ9AV4/9nrMlyJ6p69oMu0yKjQUIhAKLEjrYCHRWNiI4Ylh2N122MZt\nqDRXJnSvSGFl3meDhz/zcEwSRJmpDF2Orpi9UBIlGrCJhN1tR552arZdairFWRVnYXPz5pT601DQ\nEGMhEEJQZ63DzpM7FV1GQxND+N3+38VM/hJZCICQzjo8MZxV8QMgmwVBwULocnTNmbsIEGbSuTm5\n+JcL/kWsNf9B3weoNFemXJDMqrPC5Xfh2c8/m1aJgrnAqrei390fs7WlKkcFs9YMp19534lMWwg5\nJAflpvIFF1BeaKhyVLhw0YXY3r1d3IpW6v5IJAgbGjbgkY2PzFnf6qx1uKj2Itz1mnxpU6KBs9pS\njSvqr8AdL94hO+aeT96D1295PWmmIaOxqBH77PtiEgLqC+qxy7ZLURCeP/Q8ykxlWFkqz6hPZiFw\nQZgmenVsltET+57A5XWxaZWzxeqy1XjxCy9isXWxKAgvdbyEDQ0bUr7GLatuwVub3kq6o1smYR9k\naUCZkWhx2lzUMkpGhbliwQWUFyLNi4TPN3MZsZTrZIKQm5OruKhwtiCE4OGND+ONrjfw3MHnxPZE\nLiNCCP5nw//A5rLFVH6djuuxobBBNotn1Fvr0evqVYwh/LXzr4rlSLiFMMtEWwh7+vfgo5Mf4Utn\nfWnO7qnL1YmBu/Oqz8Oe/j3448d/lKXFJaM6rxqryxKvVcg0Vp0VBrUBK0pWxDyXaLPwTFsIgLAW\ngVsIc09zbTPe7n5bdBnJLARD4sSJucaiteDBqx7Er3f9WmxLtnrdpDHhj9f/EV8884tp37feWg8C\nEmshRNYSKcUQ1DlqxVhhKjEEURCyZC8EIIsFwaA2yCyELdu3iHVCMoFJY8Kq0lVw+V1xN41fKCwp\nWIJrGq9JuEZBibkoXZGMClMFjyFkgFWlqzDgGUBuTi7MWrO4BieZhZAp6qx1suByKgUPm0qaZrQi\nXK/WY1H+IkWXERArCA2FDfj7M/8+ppw9kNxCWGxdjLeOv4VR7yi3EFJBulK5Y6QDO20759Q6UOKS\nxZdgY8NGWVrcQqSppElWykJKvL2kg6EgAqGAuFQ/UyzKXxS3hj5n9mBxBFYyglVrzRZBKDYUywRB\nabXxXNBQ2KDoMgIQM/BfUncJ/mfD/yhep9QolK+QbbwjsRDuPPNOuANu/NfO/8oqQcjutNOIhdA9\n1o0VJSsynor4/Qu/n3DDnFOBeIvTxgNC+YVM50d/a/23Em7aw5k9mhc1i5Mu9jkIhAJZIQhWvRXu\ngBvBUBBqlVqxHtFc0FDQEGMhVFmqoFFppuXKZPspsF3egIiFELm2WqXGc9c9hzP/90wuCKmgV09V\nO5UuNskkCzUXfjrEW5w2H+4i4PR4z7OF29bchgsXCRXrmaXoCXjmNGicKjkkB4X6QgxPDKPcXJ4x\nC+GuT9wFErU7sCpHhVdvflXcyyNV1pavxXu974lJKZ6APGBdk1eD7bdvzyqLOGt9IdKgcrZF4k8l\n4hX0m4+AMiezFOgLxFIYLJaULS4jAOIOaoDyngZzQZ21TrFC8sWLL562tbyxYWPsTmxR1seKkhVZ\nIcCM7BUESdop2yeVM/vEsxAGPAM82+c0gqUfD00MKW5eNB+UGEswNDGEMA1jeGI4a/qVKhsaNuCl\njpfEOEK0hZCNZK8gSCwEtk8qZ/aJV75il20XzipPXEiNc+pQoC/AgHsAWpU2IxV6U4GVdxiZGIFF\na8mahZ6p0ljUCIPagL32vQCULYRsI5Ud0x4lhAwQQvZL2u4jhPQRQvZEfq6MtF9KCPmIELKPELKL\nEPIpyTlrI7usdRBCHlC6lxS1Sg1CCIKhIHcZzSHxLIRWW2vMymbOqYterYdGpckadxEwlWmUqYDy\nXMA2rwKguOgt20jFQngcwBUK7b+klK6N/LDtMIcAbKCUrgZwO4DfSo5/CMCdlNIGCNtxKl1TBss0\n4i6jmeHzAbt3Kz+nlGVEKUWrrTWm9hHn1KZAX5BVgsBcRpkKKM8FGxs3YltHRBACp4CFQCndAUBp\nKWtMhIVSuo9Sao/83Q5ARwhRE0LKAJgppbsihz4F4LPJ7s0yjZx+7jKaCW+/DVx3nfJzSgvT+lx9\nCHyl9+QAACAASURBVIVDc1o3ipN9WPXWrBp4i42CyyhTAeW54Pzq89E+1I6J4MQpYyHE4xuEkDZC\nyCOEkJjRmhByHYA9lNIggEoAfZKn+yJtCWFxBO4ymhl9fUB3t/ATjdLCNLaRTrbUaOdkhmyzEIoN\nxRicGMSAe2Dey2mki1olbCV6ePjwqWEhxGErgDpK6RoAdgC/lD5JCGkC8BMAX55J51im0XytQzhV\nsNmE39u3xz5nVBsRCAXgn/SLbTttO3n84DTEqssuC6HEWIIhj+AyWqgWAiBUCmgfbBf3V8lm0lqY\nRikdkjx8GMA29oAQUgXgTwBupZR2R5ptAKTlP6sibXHZvHkzxj4awwNdD8DutyPvBi4I6dLXB6xe\nDbS0ALdFbdHA9oZ1+BzitoKttlb84IIfZL6jnHml0FCYVYJQbCzG0ITgMlrIE5Sm4ia0D7XPicuo\npaUFLS0ts3a9VAWBQBIzIISUsVgBgGsBHIy05wN4CcB3KaUfsuMppXZCiJMQsg7ALgCbADyY6Iab\nN2/GG4+9gU2XbsLzzz7PXUYzwGYDbr4Z2LpV+XmWg15mKsNkeBJ7+vcs+IJ+nOmz+aLNWbUYkWUZ\nLeSgMgAsL16Ox9senxOXUXNzM5qbm8XHW7ZsmdH1Ukk7fQbA+xAyg3oIIXcAuD+SQtoG4CIAbDeL\nrwOoB3AvIWRvJCW1SPLcowA6AByVZCbFxaA2YCI4wVfNzpC+PuDSSwGPRzmOUGGugM0lGGxdji4U\nG4qzToAd8Xf65MwSi/IXZVWlWVbPyOayLWyXUXETDg0dUrQQ3G4gEJinjimQ1EKglN6k0Px4nGN/\nDODHcZ7bDWCl0nPx0OfqMegZhEFtSHnXI04sNhtQXQ00NwtxhNpa+fMNhQ3oGOnAZfWX4cjwETQW\nNc5HNxOybh3wt78Jr4NzesDqGR0ePrygLYT6gnqcHD+JQCgQYyHcfTewZg3w1a/OU+eiyNqVyoAQ\nVGb7pHLSY2JC+CksBC64AHjvvdhjmCAAQqnxxsLsEwSnE7Dbkx/HObUoNhbDO+ldsAvTAGGXuaUF\nS0FAoFFpZM8NDChb7fNFdgtCrh794/18DcIMsNmAykqAEGDJEuDEidhjGgsbcWTkCADgyMgRNBQ2\nZLiXyfH7geHh+e4FJ9OUGEtgVBuzPn8/GU0lTTBqjDGp3A7HVBZgNpD1gmD32LPOn72QYIIACL+V\nPnwLwULw+4GRkfnuBSfTFBuKF7S7iNFU3KQYUB4d5YKQMtxlNHP6+qYEoapKeBxNbX4tTo6fhH/S\nn5UWAqVyQaCUu49OF4oNxQs6oMxYXrxc0cpxOJS/k/NFdgsCdxnNGJtNEAIAsFqFgdXtlh+jVqlR\nm1+Lvfa9cPldqLRMbyOQuSYYFH4zQTh0CLjoovnrDydzlBhLTgkL4bzq83DtGdfGtDMLQbLT5ryS\n1YJgUBtgd9uRr+Uuo3SRuowIEcQhntto25FtWFqwNOv2kPZHFlEzQejrA3p7p75ETz0F/Md/zE/f\nOHPLkoIlWenCnC5lpjL8x2XyD6nfL6ScqlTA2Ng8dSyK7PrmR6FX6+HwObiFMAP6+qYsBCB+HKGx\nsBEvHX0p69xFwJQgsKCy3Q54vULmEQDs2wccPz4/fePMLTeuvBH3X3b/fHdjTnA4gIKC+JO0+SC7\nBSFX2KiDB5Wnz5/+JLhapBYCIPyt5LNsKGzA/oH9WTkbi7YQWPzg5Enhd1+fkFrL4SwkHA7BjRtv\nkjYfZLcgRHZu4kHl6REOC+Wuv/99eVAZSOwykv7OJuIJQn+/8Ntm44LAWXiMjk5ZCNkSWM5uQYhY\nCNxlND08HkCjAZ57Tlj4Ul4+9Vw8C4GtTs7GVcp+P6DXywVBrZ6yELggcBYi3EKYJsxC4C6j6eF0\nCjOPZ58Fzj9fGDwZ8SyEUmMp1pStmZbLiFJg2bK5D4j5/cKXRioIK1cKghAOc0HgLEyYIPAYQoqw\n2uHcZTQ9nE4gL08Qg+g9EOJZCIQQ7P3K3mlZY/39wOHDc2/u+v2CwE1OCsFkux0480zh/sPDQqyE\nCwJnocFcRvG+k/NBVgsCdxmlBxMEJWZzNnLokPB7cHB2rhcPvx/QaoV6TCMjgiCsXStYCDabYAFx\nQeAsNLiFME24yyg9EglCaakwqAaDQlEtjyf9+7S3C78HBtK/RipIBYG5h5qaBEHo6wPq6gTLgcNZ\nSHALYZqIFgJ3GU0Llyu+IOTmAiUlwsKuyy4D/vKX9O/T3i4Ee6WCMBcrLpkgFBUJVklpKVBRIbiM\nbDagoWHhWgjZskKVk3mYhVBUBIyPAz7ffPco2wVBrUcOyYFJY5rvriwonE7AkmA/ocpK4Gc/A44d\nm5mFcOiQEKdgLqMDB4BPfjL968VDaiEcPAiUlQmZU8xCWLp0YQoCpcCiRcJgwDn9YBZCTo4wwWFZ\nc/NJKjumPUoIGSCE7Je03UcI6YvsiLaHEHKl5LnvEUKOEkI+JoRcLmlfG9llrYMQ8kAqnbNoLSg1\nlsaUjJ0O774L3H9qLnSMSyKXESD4LP/3f4FVq9J3tVAqWAif+tSUhXDkiBBknm38fiGNtrBQuGdZ\nGWAyCW3t7QvXQhgcFCy1uXa5cbITZiEA2eM2SsVCeBzAFQrtv6SUro38vAYAhJBlAK4HsAzAVQC2\nkqnR/CEAd1JKGyBsx6l0TRkF+gK0/0N7Kq8jLk88Iey0dTqRTBAqK4XicFdemf5A2t8vBHObmqYs\nhN5eYdYzE6tDCamFwAQBEKyEXbumdoBjRfAWCp2dwm9e1vv0hFkIAPDkk8BZZ81vf4AUBIFSugOA\n0o62StP2awA8RymdpJR2AzgKYB0hpAyAmVK6K3LcUwA+m0oHZ7LHazgMvPzy6bcfb6IYAgB8+9tC\nQTi9Pn1BOHQIWL5c8OezGW5Pj/C7tze9a8ZDKgh9fVOCUFExVZpjJq9lvuCCcHojtRDq6wFjFuwB\nNJMYwjcIIW2EkEcIIWz4qQQgHQ5skbZKAFKDqC/SNqfs2iXMVkdH5/pO2UWyGMKiRcLexAZD+oNo\ne7tgHUgFgQnBXAlCUZHwWGohAIILzGBYeJlGTBD4TnCnH5TKBSFbSHfn+q0AfkQppYSQfwPwCwBf\nnL1uAZs3bxb/bm5uRnNz87Sv8dJLwN/93cwyaRYiyVxGjJkKwurVQsbS4KDwAe/pAc44Y8pSmC2k\nFgIgtxAMBuG1zuS1zBednUB+PrcQTkc8HsHlqtXO7DotLS1oaWmZlT4BaQoCpXRI8vBhANsif9sA\nVEueq4q0xWuPi1QQ0mXbNuBXvxLcI+GwEM0/HciEIBw+DHzhC4KZq1IJmTK9vcDVV8daCL/4hbCy\n+OKL07tXIkGoqhL2eZgPQbjvPkEIf/ADIcA9XTo7gXPOmRtB+OlPgXXr0n/PM8EPfwhce63w2Tjd\nYKWvZ0r0ZHnLli0zul6qQySBJGYQiQkwrgVwMPL3XwB8gRCiIYQsBrAEwE5KqR2AkxCyLhJk3gTg\nxRn1HMCLLwKvvKL8XF+f8HPhhYJ/+VRL7TtwAHj1VeXnksUQGNMZRN97T/hhDA1NDcxsXcPoqDDA\nRVsIO3YAu3endh8lEgkCq+Q6H4LwyitCjOqcc6b2ZpgOnZ3CoD0XgvDMM8D+/cmPm0927BA+x6cT\nPT3A738vfFeyzV0EpJZ2+gyA9yFkBvUQQu4AcH8khbQNwEUA7gIASukhAP8H4BCAVwD8A6Xi0puv\nA3gUQAeAoywzaSZs3QrccANw221TJZIZe/cKXzaVSlDiUy2w/Je/AE8/rfxcshgCYzp+9+efB154\nYerx2Jjg7gCEOMKePcIAvXhxrIUwOjqz1MpoQSiNbLF79dXAf/7n1GvJtCB0dwuCoNVOf2AbHxd+\nVqyYfUFwuwWXXrbHztzu0y9+8tJLwB13AB9/PDsWwmyT1GVEKb1JofnxBMf/BMBPFNp3A1g5rd4l\nobsbePtt4PbbgdZWwRpgHDki5KcDghKPjk6lJ54KdHfH/8Kn6jKaTmaO3S7PgpAGxEpLhQB+dbXw\nE20hjIzMrN4REwSrVVhQx/phMglVT4G5EwSfD9DpYtvdbsEPzFZNDw3FHpOIri6h5EZR0ewPih99\nJLhIpZMgt1t4v7KJ01EQOjsF9+K99wpJGdnGgvWqh8PCwNPUJHyxokswd3QAjZFKzqeihdDdrfya\nKJ2bGILdPnU/ZlXohcoiKCkRBqGaGkEQpPsdA7NnIeTkAHffrXzMXKSdbt8OLFkifNaiOXFCyNYi\nBCgunr7gdXYKqYasYN9ssnOnIDTSCUNTkyBC2cT4+PSFdKHT2Qn86EfC2LUgXUbZysCA4BbR6wXX\nhZIgRFsIpxLxLASfTxiklGa10aQrCA7HlLsIEGbJbW2CGJhMwr3ZIEep0M/ZsBASMRdpp/fdJ7zu\ndoW1kd3dUxZncfHUwDY2Jiz4S1ajaC4FobUVuOKKqf9XOCzE0z74YHbvM1NORwuhqwu44ALga18T\nLMtsY8EKgvQLqSQI0S6jU8lCCIeFGarSa3K5UosfANMXBCZAY2Py2U1JiTAY19QIj2tqptxGExPC\ngD4bFkIiZttl1NIiLHrbtElwS0Yj/fyVlEwJQlcX8PrrU2sM4tHZKVi2TBBms8hdaytw1VVT/y+H\nQ/jMtLYKj0dGBDfrDTcAjz46e/edDpQKFsJcCML+/cAf/zj7150plAqfj/p64Oc/B2YhkXLWyVpB\nePvtxF+SRILgcgk/LAOloGBhWQg7d8pfz5tvyp/v7xcGfYcj9j1K1V0EpD6Ier3CdaUWglQQWJC3\nunrqNwssj45OzaCVXC+pMB+CsHmzkBZ56aWCOEQTbSEwC4gVKEuWGs4sBIOwB9Ss9d1mE96vs86a\n+n+xQZcJwvPPCxbDmjXAb34zO/edLj6f8HmQCsJslZh5/XVh+9hsY2BA8GhYLEKyS266q8DmkKwV\nhKuuSuxfTCQIR48KFTDZuoOFZiF89atTGUQ2m1CmWvr6ursF60erFcxuKXMhCAP/v70rj7KiutPf\nr2VpwKY3GpvegGYTjLIokEmitBvGBTQnY5IJxomaxBhnzGriMpPgmUwUT4wmEydjEmImRsccSSbq\n6CGGGMhRI4oEBFFAEJqlm72hlWa/88dXv9R99arevjW53zl9ul+9169+VXXv/X773RHrdgtzGQHh\nFsLevUwTrajI/BnkkxB6eoDjx2OPdXUxJvLJT7Ln05Il8WQW5TLq6OCkT0YI69czPiGSW7fR0qXM\nrrOVoN272chw9Wrey//7P+AznwE++1m6VovRgvvddzk/9b719AAXXphZ+m4QW7dmb3l0d+e+N5Yq\nAaWMkiWEw4cTD45EhGC7i4DeZSEcPEiTVxcU3QKzo8P/zDvv8NrDiC5dQkjF797ZycXr8GHgyJF4\nC2HoUP4OsxD27OGCN3Ro5m6jfBLCHXcAt9wSe0z7NPXpQytT227biHIZbd8OXHkln1/UQqvbgI4c\nyde5JITVq6n5V1dzThjDxXH4cCpJf/4z8Kc/Mc5RW0tCKkZgt7ub97ari4Ss4yUXsmzblv39/MIX\nWC+QSzhCyBKZEoKdYQQktxAOH45NWS0mli9nj54lSziZlRjsXul67WFEl2pRGsDg7+HDyV05nZ2U\nqaqK9zEYQ2hspFWgVkPQQqipoRWRaWA5n4Swdi3wk5/E1k5onyZFW1u8xh/lMuroYNDQmOg4woYN\n/F91GeSSEPbsoTx9+/L5qp++rg6YPh34zneAc87hsxLhPFm3LjfnToZ776XvHKCFUFXFsbpvnz9e\nckEIW7dmfz87O3Pfk8sRQpYIBoptJCOEoIWQiBD27eO+CaXQPnnpUmqYFRXUVBcvZvFSGCFEWQip\nBpU1GymZldDZSbeP3seghTB4MGXSRufBGIISQj4thEzTTjdtAmbOBO62KmfUQlAECUFrENQy0loC\nY/icGhrCSUSxdm2swjJkSO4IwX42Oj527eI5pk8Hfv97YNYs//NjxxaGEBYtAm67jdlogF8XofdO\nx0uU0vDss3R1BXHbbfHzVi2EbFxhe/dy3OcSjhCyRJSFoDUIw4fzdZjLKGghJHIZHTiQ+Hy5wHPP\nxVdTh2HpUk7ctjbGEfbs4YJlu4wSWQjpuIyA1DRrJQRdYIIxBMAnAyDcQtAmeJkg07TThQuBY8ei\n/8cY3ssf/pDuAV2UghbCpEmxqad2DQJA2QYN4hjcvp3WVFtbeHYSEK+w1Nam5/P+/e+jr8tuiaAE\nvnu3TwhALCGMG8f5EoZnn/XjK0eOMFibCXbuZLbWF7/oKzDd3VR6lBCSWQgLFrB3lr0B06FDwLx5\ndKEqjh+n4mFMdoH6fBCCZhiVMkqaEKIsBK1B0AwNmxCM4YQbM8b/fDILQfsc5YsQduwALrsstYwO\nmxD+4z8Y1GxqSs9CyBchKAEla9vb0MBrPnbMjyHk20IIu44bbmCLgCjs2sWFfMQIdsXVzJQgIYwa\nRRJQTdS2ThUaWO7o4PV/4APMFgtDUGFJx2XU08OEi8ce4+sTJ2L/126apoqQEsL48XSPjR7tfz7K\nQvjlL9kaZM0avl6+nMkOmWDRIuD97wc++lF/vNoWwq5dJOPq6mhC6OhgbcXVV/vP2d6pT7Fjh6+A\nZBNY3rPHWQglh6gFOjghbULYtYul4faClaqFkMhFlQ0efZRpgPfck3gj7c5OktOYMSSCd98lMej+\nwYAfgGtpyT6GAGRmIQRjCEH07csJuX17rIVQaELYty/xQmuPo9mz2R23q4v3UAPkAM/d2OhrolGE\n0NlJbbi+ngv+tm3hTRXDLIRUCeGNN3it//ZvJNxvf5sWpCKRhVBWxuwiG2PHxlsIb70FfPnLHIeq\nube3Z64wbdjA+6GBboD3xXYZtbdzjkRZkdu3s6vsaafxOQH+gm0Tmm6YlE1c5uhRypdLQuju5nyu\nr0/+2WLipCCEwYM5iU+c4MBpDGy9M3gwF4uoGEE+XUbGcBvPefPYFfPBB5nffv758Z9dupSfEeGC\nP2UKU04bGnyXUUcHB3t5efYxBCBzCyHoMgpC4wjFCiofPkxtOlVCuOACYOVKxpLGj49vlW67Vt5+\n288QUgwdysW6upqE2KcPYz9hHUezIYQVK9gyurGRmTD33x9rPUZZCHV14d83ZgxdGeoa6ukBPvYx\n4N//nUqJvenRgQOZ+eVVM7bH67vv0mVUVxdLCFEWgsZmzjrLl0kXbJvQckEI+/ZRqbQJ4dxzmSqc\nKXSsZbE9fEFQsoRQUxOtsW/a5McPAE6+gQM5yNRkt1FWRq056vsycRkdPQrcfHPyCbJiBb//vPPY\nCuFrX2Mn1pdeis9/f/VV5pArXnuNi5NtIbzzjn/tuYghDBiQelDZjiEk68OicYRipZ3qs06VEMrL\nSdL33RfedMx2rbz6avz+t3V1JBR77E2a5AdRFXv2cOxo7QaQXlB5xQp+79y5wE9/SteOBlC1TUhU\nUDkMAwZQls2b+fqLXySRffazsbGg9naO10z2y1ZC0Cw1INxlFEUIR45wXNfVcbHf5u2k0tnJam/b\nQti6lS7WRPf0S1/id0ZBG2EeOsQx1dXFVt3f/nZ61/2lL/ljctcuPwmhlFGyhDByZPQCHba5hLqN\nNKgXRKLU02Quoxde8CeMYtkytt9Ots/Cz3/O9txlZdwIZN06mry1tbGBYoCmethiNGwYP2sM88z1\nM4WIIRjDiXfaab7GmcxlBCS2EH7728TB3iAyIQS9L4kWWq3nUFxxBdN97QwjhRLC0aNclKdOjX1f\nCcEee2GEoNaBrSlqUHnjxuQtF5QQ2too/+WX89q7unj9ffr4faxUYVCXURTU+nnoIWZGPfSQb6UG\nt0XNxK2qhDBgAMfToUOxQeV162hVtbaGE0JnJxfTsjISwtat/vHzzou2EMJiCIcPs2V6ImtVlZj6\neioxGgx+5plwK2HNGj57G9u28TxKqPqdpY5eSQgHD8ZvSK2EEGYhAImL0xK5jNauZRFPMCAcVh8Q\nhtdei921aswYTrYRI6ih2ogKOp16KifM/v3+ghB1TbkmhP37uRgPHBiddhoG1S6DaadLlwIf+Uh6\n+wdkknaqC1eiwGLQ9Xj55fwdRsq6aK5aRQst6JYbOpTvBS2E4EIRdBcBXCjefJPW4U03RW98dOIE\nXVATJ/K1WopaBxHcdKW6mvf84MHEY2LsWAaMH3iAZF1RweN2K3P9na5b9eBBytXYyHGvSoxtISxf\nzvESlYlmz+mmplgL4eyz/VY1AN9raop2GakbKBGx6Zitr+fnN2zgPb/llnArYf583jsbWlCqBOcI\nIUuMHBn90N57L5oQMrUQ+vSJP19PD7MaZs70+8AoFi9mP5Kglh/Ezp3hpmKQEOzGV2FQt5FNCGHX\nlIp/30YyQlB3kZ5v507el2S99W2XUU0Nn5cxwNe/zv/V7JVkOHGCroq+fZNfh+36SsVCCBLCsGHA\nrbf66Zk21EJ45ZXw9+vqOC5tQjjzTMYVbGsomGEEcAH7+Mdpif7619xARbVgGxs38l4GyVgrpYNE\nXVNDjVYrkqNw5ZVsdveXv8RaR0ELYfjw9Alh40be41NO4Wt1Gykh1NVxDrW0+JlaQTesPaeDFkJD\nA5Us1dy3bk0cQ9D5mijrMIwQRo2ii3jBgvjPb9oUbwmqwqgKyZ49ia20UkEqO6bNF5EdIhIXHhOR\nr4rICRGp8V73F5HHvN3U3hCR26zPTvGOrxORB4LfFUQiCyEZIURZCFGDQMvog+f78Y9pxj70EP3G\nWtF79ChbAFx0UXILYdeu8IBekBD27KFJHLWLUkMDJ+Xq1QysAeHZU1pVnCrSIYSaGropKiuT70/d\n3EwX2CmnUHsXoZXwzjvUtMJaSofh8GEG+JIF48JcRgMHRhOCMX49gY177w3X5HR8LFoUG+dR6DO2\n731FBf/P9nEvXx7vkiovp5Z5+ukMXt54IzNqgrCVgeC5lRDs8VNdzYUyKqCsuPhi4K674lumqzau\nfvRx49J3GQWtXlVibJcRwPFSXs5n3d1Ncpw9m+/ZFkJDA8fk8eP+2LQD/smCyjpfkxGCuoxsQqip\n4XmDMbdNmzie7bjE4sV0Kyoh7N598lgIDwO4JHhQRJoAXAzA9q5/AgCMMWcBOAfAjSLitTzDjwDc\nYIwZC27HGfedNjIlhCiXUaLUU00zDJ5v40b6auvq+DC1KGbZMg6QM85IbCEcOUJNKMy9EiSEZDnK\n2s5i2DDfXREkuYMHec5cuow0fgDwOjZtSm1jj5YWZuPYC1RDA3D77YylpEMIydxFQDghjB4dTQg7\nd3IMpbqLWFkZNdGnnw63ENQKDI49O47Q0eG3pk6E2bOprQeRiBDCXEY1NTyeqWZaXs559dprXGSr\nq6Pn5L33MkMriKDVq6mntssI8Bsj6rW89BJ7Lmn1txJt//6UaedOnxDUejMmeVBZ52siYlOr1iaE\n1tboRoQ6J7TmRSulzz8/1kI4KQjBGPMCgDA+vR/ArYFjnQAGicgpAAYCOAzggIjUA6gwxrzqfe4X\nAK5KdN4RI3LrMkoWQ2hujj+f/V3Tp/uFRosXkygaGhJbCKoVhGnT6RJCQwMrR+0FobKS2pRmK+3Y\nwUGcTmpbsgZ3+/b5A7mmhoSTiktqyBBOXpsQFiyg9nvGGam7jFIlBHUpaWpxVxcJQSfkoUN+MRcQ\nXkuQDGPH0uLRbTtthFkIAJ/Xq96of/RRxk+CYzeI8eOp2QcD71GEYLuMghYCkJ2roqUFePFF/q6s\njCaE+fOZrhrMJEtmIQweTHet1n3otaxYwXNt3hxv9Tc1ceFXZUVrKfbv5/OpqIgOKqdqIYS5jIB4\nQjhwgGPrggt84l+yhCm7dnHcSUMIYRCR2QC2GGNiQoPGmN8BOACgA8AmAN81xnQBaARge0W3esci\nMXx4dN5zFCHoVo1hxR9nnhldORplIdjWxvTpfhxBCcFOBw1DlLsICCeE1tbo72poYIDSXhCC6bS2\neydVJOsB1NXlWxx2OmMyiPCe2pNg2DDKPHo0J3QYEe3YERtYTJUQgFgrIWghrFwZ29U0E0IYN45B\nzLA+9rroBi2Eq69maujKlcw4+/SnU7uO+vrYLS+NIbFMmRL/+UQWgi1bJmhuJiE0N4dvRAWQhDdv\nBq65BpgzJ7ZZYpAQgjEEEcpnWwhKCC0t/B20+hsbqVD07ct1YNw4uuIef5xkASR2GTU2pk4Imzdz\nXql8we/dvJnjaPJknxB0fdCUWuAkJgQRGQDgDgDfCnlvDoABAOoBtAL4moiMyESwefPmApiLO++c\ni8WBLmHvvee3rVBUVdFFMXhw+AJyySU0QcMWv+5uPvAgIQQthKVLyf6vv+5bCLbLKNg1NFHusQbs\nVLtPxWUExGuIdmA5E0JIJctICaG83C+ISwXNzeExkb59ea12uqAxwMMPc3Lffrt/PBtCULfj8eMk\ngD17/PczIYQrrmBgMQz9+7PRWtBCGDOGGSiXXEIC/NCHUjvXGWfE908qK4utoFZExRAGD/YX3EyR\nioWwaRPnwt13k9D/9Cf/vSgLQQkBAP7pn/y4WF0dr3XTJlocK1bEW/1NTXRj6Vg/4wz+/zPPMMUb\nSBxUnjAheZaRxhBeeYX33O5Ma1seOo7UNdjdDTz5JN2CWoUNJE/9zRSLFy/G3Llz//qTLTLZs2cU\ngBEAVoqIAGgCsFxEpgH4IID/NcacALBLRF4EYwkvALCHchOAbYlOMnfuXPz4x5yAwcrjKAthzZro\nfUqrqtj2d9EiP1ilCHMZBX2XkyczhjBnDjW9yspYl9Ezz7Bq1N7dbOfOaAuhvNyvRWhq4sTRwRwG\nva4gIdiusHwRgh14ralJPYuppSV6Vyhd8PR6nnmG1bEPPOC3SAb8oHIqsIvsuro4AQcP5t9qjW3Z\nQtLZtIkFWOlg+vTw+IHC7phqY84cLmAjRiQPxivUrfaRj/C19rgKcweqm6WqKvaaysp4LFlQhnNh\nXQAAFnhJREFUORGam7mANzeTWMOyn3T/kT59gL//e8ZZ2tr4+fb22Kru6mq/pYemt955Z+y1PP88\nA+zTptHNFmYhPPusP9YHDeIucDYqKzkWjhyJHT/bt3MjnkStbDSGUFvLa7drToKxCS2SnTiRhPDD\nH/L7x4zxa0D0O/NhIbS1taGtre2vr++6666svi9VC0G8HxhjVhtj6o0xrcaYkaD7Z7IxZieAtwBc\nCAAiMgjA+wG8aYzpBLBfRKZ5JHItgCeTnTRKI4kihLfeSrxx9axZfh8UG2Euo64uLtp6nvJyPvRr\nr6W2B/guI2OAl18G/vCH2B74iVxGQKzbKFknxJYW+kuD5JhvC8F2Gen5UrUQWluj5ZkwIVYDXruW\nz2fOHN4TzSvPxkKorvY1Rb3Pmk+fiYWQDb73vfiNeBIheH+i0l0B32UUVrBZU5O9haC/o1xG9v4j\n9hxbu5YLvJ29FHQZhV3L889TUZg8mW6yrq7YedTUxMU30VgX4bUHrQS1EFJxGWkyhT0vg5aHjqPT\nTqNCcvfdbE2j17J7N2NB3d3ppYMXC6mknT4G4CUwM6hdRK4LfMTAIwsADwHoJyKrACwFMN8Yo8P6\nZgDzAawDsN4YszDZuauq0iOEnp7EKZezZlETDbp2urt9QtCYRVhw+rnnqMUqKiqohXV3c4COGgX8\n4hf++8nK1ZUQenr84p1En12zJl5DLISFYBNCWB58FG69Ndb9YyMYWNaGfX37cjFYtozHsyGEqirf\nxN+0iRNU8+oLTQjpIugyUgshDOoyCsYQgOwJwd4Fz1bQVq7023vbxXaTJ3N+rl1LEgzGTDTbr6cn\n3u2r13LgAMdAayv/1iplRWMj/z/ZWA8u3roL45gxqRHCwIG0MFMhBIAyX3EFkwIA32WkYzFV67CY\nSOoyMsZ8Msn7rdbfhwFcE/G51wCE5GdEI6z/0PHjfLADBsQeV/ZNZCGMHs0HvHw53Uf6fQcPcgCU\nlfkDNSx9VU1cG2olrFxJd8dXvsKeRbpf7OTJ0fIoIWzcSLNTi3eiEOaPL0QMwdZs0rEQgnntNoIL\nXnu771/XeM0FF2ROCNpew7YQzj2X54mqQSgl2JlGxlDh0DEbhGqiYYTw/e+HZyalCttC6OryCeGJ\nJ5hmev75XPw/+lEeF+Gi+IMfsOo52Fq7uppup4EDwxdIVaAmTeL7EyfG7yOigeN0CUFbYNTWRscQ\njh4loakSVF8fTwh2SrBNCPfdF0u+FRXMQNq+vXcElIESrlQGwl1GBw+SDIKDSRetZEVZM2fG7341\naJDvb9XzRRW4BdHQwGKx/fuBq67id2jZeqIYAsCB9Oab9C9n2ie9sdHvs5RpllGitNOgy+iaa7iw\nZovRo6mt62RXCwGg71gzurJ1GamWtnmzTwjp1iAUA3am0apVHCtRXWz79eP1aCWzjb/7u3jlKR3U\n17ORXmVlrMtoyxYGm/fujd+ydtYs9vn6whfi5amu5v9G3XudL9qeY9Kk+HmolnS6hKBKnt1kLwgd\nN2qJ33IL97aI+k6bEMaPj53vGtBfu7Z3VCkDJU4IYT7LMHeRfhZIvohPnhzbX+bAAX+i2QQUVc8Q\nREMDe89MnEhSmTPHL29P5jKaPJnkcdttmS+yEyf611MIl9HVV4c3f0sXfftSQ9eYS3u7755QC8GY\nzAjh+HG68Sor/T5BgwZxwm7ZUvruIoVaUYncRYq6utR6TKWLsjJavEDs/Ghv55x74gmeV7V2gEHV\niy5it88gqqo4L8KsbYDPZdYsf8xdfHHsggxwvlZUJB/rdpYP4Ct5idrYqLtIcfPNsXPYDiofOEBl\nKpHSN2QIY5vOQsgBwiyEKELQRT0ZIQQ7UHZ3xxKCElBUxXMQw4aRENQsnz7dNymTBZWnTqX5vH07\nSSET6PXYXUnTQbouo1xCK0wPHeJ9V9mHD2ecRy2IdAnhwAE/vlNby3jEiBF+f6XeQggTJwKf+xzj\nMMFFMQhdtPIZuLTn45YtwPXXM7NuzJhYi33AAG7zGeXiBKIthNpa4Kmn/NdXXgl84xvxn2tt9S3K\nKOimRYqODs7XQYOYfXTkCFup3HCDHzsMEkKYfEoIWoOQqBC0rs4RQs6QDiH06cNFIJlWP2ECtVLd\nucy2EIIuo1QthI4OnxAmTqSJf/x4cpdRLtDURL/nW29xIqbrHkhECMeOpdbILlNoDxptSKaLiohv\nJaRLCO+9F6sp19YyZjRihN+SO9j2ulTxr//KnlnLliUvaKur86t+84WKCt7fY8f4zD7/eT/lNJ3v\nKCvLfky9+GLytOGpU5n9p1ALQcT3PixdCvzsZ8wQBJKnh9qEENyXJQzqMnKEkAOk4zICmAWUTGvo\n358ajQY0VZsE4l1GqVoIgE8IlZW+VhDVxyiXEOG5Fy7MbHu+RISgZJmvXZ7UQmhvj39u73sfXT3p\nEMLIkZx8QULYv58EcOqpDHRrTUCpo39/xlpGj06ecFBXl1izzQXKyjhX3n6bv1tbGegOdm9N9h2V\nldEuo1SRrP0HwL0SXnzRbwFiK3nqNtqwgevB3Ln+BkOJ7mNVFb0Kx46Fd64NwhFCDpGOhQBwI+9U\nFi/bbZSty6ihgVqZ7VefNIkFalF9jHKNfBFCunsrpAvtQbNlS3wF7qhRDJKmQwhqVdgb+OhEVAJo\nbmZ2TG8ghHQwdGj+lQ+A42HVKp/A77rLzzBKFdXVhQnoDxlCDV5duPac1iZ7GzYwM3D3buBXv2Jm\nVyJC0OSTvXupVCaLpw0ZwjXLBZVzgLA6hESEkCpsQghzGRnj+xuT4fTTgX/4h9gUy0mTaK3k211k\nn2/JktwTQjDDKNcYNy7aQhg1ipM1HUI45xy2Fdmxw/elBwmhpYXvn2yEUFdXGEKoqiIhKIFfdlni\n1OowVFdnbyGkirY2ZhX29HDOjxnD45pptGEDFZPvfpcuuscfD+8XZUPdRm+8Eb6Zkg0lgt5iIeTR\n45g9wuoQckUIv/kN/w5zGXV1+buEJUN9fWwxmn7/vfcmzwzJFSZN4sKZCSGUlzO4duJEvDWTz4Ay\nQHkPHeIifuGFse9lQginnsr/W7IkvtOnbSEApV2DkAmGD09c2JgrBC2ETFBVVbiU37Y2dmLt358e\nBCUE22U0ahTv3xVXpPadmr305pupWQhA7yGEkrYQ0nUZpQpN1TxxIj7tNNEmO6li0iTKWSgL4fTT\nmYueCSGIkBTCahHy7TISoXb2/PPxC0xjI83yfftSJwSAJLxwYazLSMQngJYWTtJSrkHIBFddxYUv\n31BCCGuylyoK5TICGEd44QVg3jw/fVZl6Ojgwm6nzKYCLU6rqEhuleka4AghB8iXy0jbL2zcGBtD\n0PNt25bermNBNDfz+wtFCH37MgibCSEA0W6jfLuMABLC3r3xC0xZGbX6t95KnxA0Rx4g2S1f7i9A\nzc0nn7sIIOkl22Y0F6iq4rzJxkIopMtI4whTp8a6tqqquKi3tCQP2AdRW8uOrsncRXp+/Z/egJJ2\nGYVVFOaCEABWcC5ZQgtB9yGorKRv8DvfoW80U2jmT6KitFzjm99M35eriCKEfLuMAD9lMWyBGTWK\n/Y7OOy/171M3na252a0bLrggPYJxiEVlJWNs2VgIn/pUYRu9zZsXnxpbXc3WGpl0CKitZU+0TyZs\n6kP0NkIoaQuhooKuDN0FC8gdIVxxBbsyBmMIv/sd3S9f/Wp23/+xjxUuhgCwgCdTrS0RIeTbQhg3\njvc/7DyjRrFmIJ0FfMIEWgNRpvywYWzR7JAZ9DllYyGce274rnP5wqWXxi/81dXMcMuUEHbtSq1i\nf+hQdi9ItYV7sVHShCASX2Z+8GBuCOHSS9mtcdcu32XU1ETz8pFH0jcjg/j859k3qTegoiK8lL8Q\nLqOJE/3ukEGMGsU4TzqEcMopXHDS9Qs7pIaqKt7jbFyqpYDqalo6mRCCav2puIz69eOOeb0FJU0I\nQDwh5MpCqK3lYrRkiU8Io0cz6yDd9g+9HdOmsSI2iEK4jCZMiK0mtaGTNV0XzzPP5KYBn0M8KisZ\n8M9WYSo2dFxnaiEAqRFCb0PJE0JNTX4IAWATraNHY7tI5qsqt5ShudpBFMJlBETf80wJ4W/xGRYK\nlZXZuYtKBepSzJQQtGvqyYaSJwTdUEORS0LQvONCZTyUKmbMYPWu7u+sKITLKBFGjuTi7oLApYMZ\nM4A77ii2FNlDCUETStLBlCnc++RkRCo7ps0XkR0i8nrIe18VkRMiUmMdO0tEXhKR1SKyUkT6ecen\niMjrIrJORFK+nfm0EE4/HfjMZ3q/PzRbDB1KN4DdBRYojMsoEcrLKZcjhNJBfT3jb70dw4YBN96Y\n2V4RFRVsA38yIhUL4WEAlwQPikgTgIsBbLaOnQLgEQCfM8a8D0AbAM0R+hGAG4wxY8HtOOO+Mwz5\ntBBEgJ/8JHff15sR5jYqlMsoEaZOLWz6rsPfBgYMAP7rv4otRekhKSEYY14AELadxP0Abg0cmwlg\npTFmtfe/+4wxRkTqAVQYY171PvcLAFelImA+LQQHH2GE0NVVfD/pb34TvXWkg4NDbpFRDEFEZgPY\nYoxZFXhrrPf+QhFZJiJKGI0Atlqf2+odS4p8WggOPmbMYPXl3Ll+C4RSsBAcHBwKh7QrlUVkAIA7\nQHdR2Pd9EMA5AA4B+IOILANwIN3zzJ07FwD92j09baD3yRFCvjB0KCs6OzvZ0njkSOZp211cHRwc\nSguLFy/G4rAUwQwhRveOS/QhkeEAnjbGnCUi7wOwCMBBAAKgCcA2ANMAnA/gw8aY67z/+xcAPQAe\nBfBHY8x47/gnAMwwxtwUcT6jcj31FP38Tz/N9yoq2GsoasNxh+zx058CDz7IJn87dhRbGgcHh1Qh\nIjDGZJx4narLSLwfGGNWG2PqjTGtxpiRoPtnsjFmJ4DfAThTRMpFpA+AGQDeMMZ0AtgvItNERABc\nC+DJVE5sF6YZk7tKZYdoXHtt8VNOHRwcCo9U0k4fA/ASmBnULiLXBT5i4JNFF4DvAVgGYDmAZcaY\nhd7nbgYwH8A6AOut4wlhB5UPHWJHx95eJVnq6NcPuPPO3tOQy8HBITdIyWVUaNguo+3bgbPP9nuX\njxvnb3LtkD+cOEF30d96jYaDQ29CoVxGRYO6jIxxAeVCoqzMkYGDw98aSp4QBgxgAVlPjyMEBwcH\nh3yi5AkB8OMIjhAcHBwc8odeQQhanOYIwcHBwSF/6DWE4CwEBwcHh/yipPdUVtTU0EI4csQRgoOD\ng0O+0CsIQS2ErVtPjs05HBwcHEoRvcJlpEHlp58GLr+82NI4ODg4nJzoFYRQXQ2sWQOsX+/2ynVw\ncHDIF3oFIdTUAAsWADNnsnWFg4ODg0Pu0SsIobqavflnzSq2JA4ODg4nL3oFIdTUsJXCybCXq4OD\ng0OpolcQwtixwPXXu+6bDg4ODvlEyXc7dXBwcHBIDSd9t1MHBwcHh8IglQ1y5ovIDhF5PeS9r4rI\nCRGpCRxvEZFuEfmKdWyKiLwuIutE5IHciO/g4ODgkCukYiE8DOCS4EERaQJwMYDNIf9zH4BnA8d+\nBOAGY8xYcPe1uO8sZeRyI+tcwcmUOkpRLidTanAyFQ5JCcEY8wKAfSFv3Q/g1uBBEbkSwEYAb1jH\n6gFUGGNe9Q79AsBVmQhcLJTiAHAypY5SlMvJlBqcTIVDRjEEEZkNYIsxZlXg+CAAXwdwF7x9lj00\nAthqvd7qHXNwcHBwKBGk3dxORAYAuAN0FwUxF8D9xpiDIhkHuh0cHBwcioCU0k5FZDiAp40xZ4nI\n+wAsAnAQtAKaAGwDMA3AAu81AFQDOA7gmwB+A+CPxpjx3vd9AsAMY8xNEedzOacODg4OGSCbtNNU\nLQTxfmCMWQ2g/q9viLwDYIoxZh+A86zj3wLQbYz5T+/1fhGZBuBVANcC+EHUybK5IAcHBweHzJBK\n2uljAF4CM4PaReS6wEcMYuMFUbgZwHwA6wCsN8YsTFdYBwcHB4f8oSQrlR0cHBwcCo+SqlQWkQ+L\nyFte8do3iiRDk4g8LyJviMgqEbnFO14tIs+JyFoR+Z2IVBZBtjIRWS4iT5WQTJUi8oSIvOnds+nF\nlktEbvdkeV1EHhWRfoWWKaygM5EMnszrvfs4s4Ay3eudc4WI/FpEBhdSpii5rPfiil+Lda+84//s\nnXeViNxTbJlEZKqIvCIif/F+n5OVTMaYkvgByeltAMMB9AWwAsDpRZCjHsAk7+9TAawFcDqAeQC+\n7h3/BoB7iiDblwH8EsBT3utSkOnnAK7z/u4DoLKYcnnjZyOAft7rXwH4x0LLBOBDACYBeN06FioD\ngAkA/uLdvxHePJACyXQRgDLv73sA3F1ImaLk8o43AVgI4B0ANd6x8UW8V20AngPQx3s9pARk+iOA\nmd7fl4LJOxk/v1KyEKaBsYXNxpijAB4HcGWhhTDGdBpjVnh/vwvgTXBgXgngv72P/TcKXFjnVYZf\nBuCn1uFiyzQYwLnGmIcBwBhzzBizv8hyHQBwBMAgEekDYACYBVdQmUx4QWeUDLMBPO7dv00A1oPz\nIe8yGWMWGWNOeC9fhp8lWBCZouTyEFb8emUh5IqQ6SaQxI95n9ldAjJ1gEoYAFSBYx3I8PmVEiE0\nAthivS568ZqIjAAZ+WUApxljdgAkDQBDCyyOTg476FNsmUYC2C0iD3uurB+LyMBiymWY7XYfgHZw\ncuw3xiwqpkwWhkbIEBz721CcsX89/JYzRZUpqvi1yHKNBXCeiLwsIn8UkbNLQKbbAHxPRNoB3Avg\n9mxkKiVCKCmIyKlgXcUXPUshGH0vWDReRC4HsMOzXBJldBU6Q6APgCkAHjTGTAHwHjhAi3mvWkHX\n2nAADaClMKeYMiVAKcgAABCROwEcNcb8TwnIosWv3yq2LAH0AVBtjHk/2JHhiSLLAzBz85+NMS3g\nuP9ZNl9WSoSwDUCL9VoL3goOz9WwAMAjxpgnvcM7ROQ07/16ADsLKNIHAcwWkY0A/gfABSLyCIDO\nIsoE0IrbYoxZ5r3+NUgQxbxX5wB40Riz1xhzHMD/AvhAkWVSRMmwDUCz9bmCjn0R+TTojvykdbiY\nMo0C/d4rhXVOTQCWi8hQFHed2AIW2cKwL9txEaktskzTjTG/9WRaAGCqdzyj51dKhPAqgNEiMlxE\n+gH4BICniiTLzwCsMcZ83zr2FIBPe3//I4Ang/+ULxhj7jDGtBhjWsH78rwx5lMAni6WTJ5cOwBs\nEZGx3qELwaaGRbtXYBLA+0WkXETEk2lNkWT6a0GnhygZngLwCS8baiSA0QBeKYRMIvJh0BU52xhz\nOCBroWSKkcsYs9oYU2+MaTXGjAQVj8nGmJ2eXB8vxr0C8FsAFwCAN+b7GWP2FFmm9SIyw5PpQjBW\nAGT6/HIdCc8yiv5hcEKvB3BbkWT4INhyYwUYpV/uyVUDtuxYC2YaVBVJvhnws4yKLhOAiSCZrwC1\np8piywUucG8AeB0M3vYttEwAHgOwHcBhMJ5xHdjOJVQG0Pf7NpjEMLOAMq0HW9gv937+s5AyRckV\neH8jvCyjIt+rPgAeAbAKwDKw/U6xZTobwFJvrfozSJwZy+QK0xwcHBwcAJSWy8jBwcHBoYhwhODg\n4ODgAMARgoODg4ODB0cIDg4ODg4AHCE4ODg4OHhwhODg4ODgAMARgoODg4ODB0cIDg4ODg4AgP8H\nSD/sX1kA9yIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEACAYAAABS29YJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXm0ZFd93/vZVXVqrjsP3epB3S21GtSAHKLYMgasEIwH\nng2OXxjiOLywghOT5Re8gqfYeQhn2YmdOAsvZwHBMXZshgcI8MPISBYKLSMBloRAQ7fkvi3RfXu4\n3XeqW+OpM9V+f5zap86pOlW36t663bfV57uWlrqGe+rUcL7nez77t39bSCmJFClSpEgvbcWu9Q5E\nihQpUqSdV2T2kSJFinQDKDL7SJEiRboBFJl9pEiRIt0Aisw+UqRIkW4ARWYfKVKkSDeANjV7IcSv\nCyFOCiGeEUJ8SgiRat3/i0KI54QQzwohfrfj+QtCiOeFEG/ayZ2PFClSpEiDKdHvQSHEIeA9wMul\nlIYQ4jPAO4QQi8BPAa+SUlpCiNnW828H3g7cDuwDviqEuE1K2dzB9xApUqRIkTbRZsm+DFhAVgiR\nALLAJeBfA/9JSmkBSClXWs9/C/BpKaUlpTwLnAG+fyd2PFKkSJEiDa6+Zi+lXAd+H1jENfkNKeWD\nwG3A64UQ3xJCnBBC3Nn6k5uAC75NXMBN+JEiRYoU6Rqqr9kLIW4B3gccwjXyvBDiZ3Hxz6SU8i7g\nl4HP9tlM1I8hUqRIka6x+jJ74E7gG1LKNQAhxBeA1+Am9i8ASCkfF0I0hRAzwEXggO/v97fuC0gI\nEZ0AIkWKFGkLklKKrfzdZsz+eeAuIURGCCGANwKngL8A3gAghLgNSEopV4Ev4Q7gJoUQh4GjwGM9\ndnhX/feBD3zgmu/D9bBPu3W/on2K9ulG2K/tqG+yl1I+JYT4M+AJoAk8CXys9fDHhRDPACbwz1vP\nPyWE+GzrhGAD75Xb3cNIkUaoz538HAfHD/ID+3/gWu9KpEhXVZthHKSUvwf8XshDP9fj+b8D/M42\n9ytSpB3RAy88wCvnXhmZfaQbTtEM2pbuvvvua70LXdqN+wS7c78G3SeradGwGzu7My1dz5/T1dRu\n3CfYvfu1VYlrQVmEEBHdiXRN9M7Pv5Nj08e45+57rvWuRIo0tIQQyB0aoI0U6SUly7HQLf1a70ak\nSFddkdlHuqFkOuZVwziRIu0mRWYf6YaS1bTQ7SjZR7rxFJl9pBtKUbKPdKMqMvtIN5QsJ0r2kW5M\nRWYf6YZSlOwj3aiKzD7SDSXTMaNqnEg3pCKzj3RD6WpOqooUaTcpMvtIN5RMx4yYfaQbUrvK7It6\nkTf9ebRsbaSdk+VEyT7SjalNG6FdTRUbRZ668tS13o1IL2GZjnmtdyFSpGuiXWX2lmNhOda13o1I\nL2FZTYumbF7r3YgU6aprV2Ecq2lFySvSjupqMftPPv1J7jt9346/TqRIg2r3JftmlOwj7Zwsx8KR\nzo6/zudOfY6mbPLm2968468VKdIg2l1m33QxjpQSdxXESJFGK9MxsZo7/xs7uXKSS5VLNOwG6UR6\nx14nUqRBtbswjmMhkVcleUW68SSlxGpaJOPJHa3I0S2dC+ULvGLuFTx89uEde51IkYbR7jL7FsKJ\nBmkj7YTspk0iliCTyOyo2f/d2t9xy+QtvOXYW7hvIeL2kXaHdpfZt0w+4va7V3d+7M7rtt2A1bTQ\nYhoZLbOjg7Qnl09yfO44bz76Zu5buI9oVbZIu0G7y+xbJh9V5OxOSSl5culJSkbpWu/KlmQ6Jsl4\nknQivaPJ/tTKKW6fuZ1Xzb8KwzY4vXZ6x14rUqRBtbvM3okwzm6W4RhIJHWrfq13ZUuyHAstrpFJ\nZHb06uTkipvshRC89uBrefzS4zv2WpEiDardZfbNCOPsZtXMWuD/15uuVrI/uXKS47PHAbh5/GbO\nl87v2GuNSuc2zvHOz7/zukV0kTbXpmYvhPh1IcRJIcQzQohPCSFSvsf+nRCiKYSY6nj+ghDieSHE\nUI1uVKKPMM7ulEr0Nev6NPurwexVJc6tU7cCcHD8IIulxR15rVHpiUtP8JqPv4Z7T93Lur5+rXcn\n0g6pr9kLIQ4B7wFeLaV8JRAH3tF67ADwI8A53/NvB94O3A78GPBhIcTAVw9RNc7uljL76xXjXI1k\nrypxtLgGtMy+vLvN/he/8ov89ht+m/1j+6Og9RLWZkZcBiwgK4RIAFngYuux/wb8Ssfz3wJ8Wkpp\nSSnPAmeA7x90Z6JqnN0tL9lfxxhnp5n9qZVT3D57u3f7ekj2S5UlfvjmHyYZT0Zm/xJWX7OXUq4D\nvw8sApeADSnlV4UQbwEuSCmf7viTm4ALvtsXgH2D7kxUjbO7pfDNdYtxHGvHk/1ybZm9+b3e7YPj\nB3c9s1+uLTObm0WLadGx9xJW33YJQohbgPcBh4AS8DkhxD8H3gv4eXy/eeehRcb33HOP9++7776b\nu+++O6rG2eV6KWCcnWb2datOVst6tyfSEzjSodQoMZ4e35HX3I5qZg2JJKflomS/C3XixAlOnDgx\nkm1t1hvnTuAbUso1ACHEF4B/gWv+T7V6i+wHvi2E+AFcxHPA9/f7aWOfgPxmrxRV4+xuXe8YR7VK\nSMd3Ltl3mr0Qwk335fO70uxX6ivMZmcRQkRmvwulgrDSBz/4wS1vazNm/zxwlxAiI1xnfyPweSnl\nHinlYSnlYVxU82op5RXgS8A7hBBJIcRh4Cjw2KA7E1Xj7G55pZfXKcbxmL22c8y+0+wBDowd2LXc\nfrm2zFxuDoBkPBkFrZewNmP2TwF/BjwBKD7/sc6n+Z5/CvgscAr4CvBeOcRc8agaZ3drFBjnfOk8\n7//r949ql4aSYvY72RsnzOy3Okj7vvvfx1JlaVS7FqqV2gqzuVmAHUv2H3n8Izz04kPb2sYvfPkX\nWKuvjWiPbkxtWhYppfw9KeVxKeUrpZTvklJaHY8faQ3kqtu/I6W8VUr5MinlA8PsjN20gQjj7FaN\nAuMslhb539/736PapaGkmH06kb5qzB62bvb3n7l/x68IFMaBnTP7+1+4n+dWn9vWNr688GXOl3f3\nQPdu1+6aQRthnF2tmlVjPDW+LYxjOuY1+34Vs89oO5fsdVsfmdnrtr7ji6N3Ypyd+G4WS4tekNuq\nqmaVqlkd0R7dmNpdZh9hnF2tulVnNje7LYyjFg+5FlLMPp1IX1Vmv2Wzt3QMxwjct1Jb4X8++T+3\ntY+d21PJXovvTOnlKMy+ZtYis9+mdpfZR5OqdrXqVp3Z7Oz1m+x9zP5qY5ytIIiwZH9y5SQffvzD\n29pHv1bqO8vsa2aNdX19W2avAkJk9tvT7jL7aFLVSPStC9/ibZ9728i3W7fqzGRntsXsTce8Zldu\nfmbfD488svgI7/z8O7f0GmFmv6+wj0uVSzjN4VZg061uszdsg4pZ2dK+hWmnMY46yW3H7NXvLTL7\n7Wl3mb1jIRARxtmmlmvLLNeWR77dmlVjLje3bYyzG5h9v2S/XFvmYjl0esimCjP7VCLFdGaay9XL\ng+9ra2F0ww5iHMMxqBijM/vAAG0sOfJjT+Gr7Zi9MvntmH1TNvnrF/56y3//UtDuMvumRVbLRhhn\nmzJsY0c+w+sd4wya7A3b2PJ7DDN7gNncLCv1lYG3o05GO53sd7r0chRm77Xp2MYV5dmNs7zrL961\n5b9/KWh3mn2U7LclwzF25DMcBcaxmtY1O5kHmH2fAVrDMbb8HnuZfU7LDTUorJ7bafamY1K36kMj\noV5aqa/sKMZZLC2STqS39XscRbKvmtUb3ld2l9k7FrlkLmL229ROJfuaWRtJNc61TPaDNELbiWSf\n0TJDfW4q2XdW46jbo+DXNbNGUzbJaTlg58z+yOSRa87sa2at67O80bS7zL5pkUlkIoyzTTXsxo4l\n+1FgHLtpX5NFuK2m1W6X0IfZbzfZZ7RM1/1ZLTuc2fdI9orhjwLl+PviwM6UXo7C7EeV7G/0ELm7\nzN6JMM4oZDg7yOxHkOzh2pTX7nSytxwLKSVaTOt6bGiz78XsR5js/bwedjDZT3SbvZSSD54YrKmX\n+i6q1jaSvVXDdMxthYxnrjzD505+bst/f621u8y+GWGcUciwjW1PYglT3aoznZnGsI0tM2PP7K/B\nCd1rcTwAs1dXIMNIIRyVlP3aarLvqsZRyX4EFTn+sksYvdk3ZZML5Qscnjzc9Vk27Ab3PHxP1/sL\nU9WsMp2Z3nayh+0NFD+y+Ah/9vSfbfnvr7V2l9k7UTXOKLRTGKdm1cglc0Mbl1/KTK7FCX3QxUuU\nAQ2LcnrxeoBsYjTJXn1uo8Q4SqPuerlSW6GQKlBIFrpMVr2/klHadDs1s8ae/J5tM3vY3u+ualZ3\nvDHdTmp3mX1UjTMS7STGyWmjMftrhXEGZfYwWCtnu2nz5dNfBjYx+60m+x4DtKNI9v5WCTD6ZL9Y\nWuTg+EESsQS27DD71vsrNTY3+6pZZT4/P5Jkv533VzErQ82V2G3aXWbvWOS0CONsV4Y9+tJLKSW6\npZPRMuSSuS0P0l7LZnfepKpNWhwPk+wX1hb4+b/8eWDEZt+nzh5Gk+x3GuMEzH47yd4aQbK3tp/s\nK0aFK7UrNGVzy9u4ltpdZh9NqhqJdiLZ67ZOKpEiJmLktNyWq1V2A7NPJVIYttFzsG6YZF8xKxQb\nRWD0yT4VT/UcoB1Fsl/VV5nJzni3R232F8oX2F/YH272wyb7XDvZr9ZXefu9bx9qXwZN9u/+/97N\nqZVTPbdhN21W66tDvfZu0e4y+4jZj0Q7wez9RnbdMvtWso+JGMl4smfdtWf2A5zQKkaFht2gYTdG\nnuwnM5PdGMc2KCQLI0n2NbNGPpn3bo96wfGqWaWQKmw/2Xcw+7MbZ/nS331pqMqaQZn93178Wz76\nxEdDH1Of+fXK7XeX2TcjjDMK7USyV7we2BbGMZvXntkDfdscexhngPeoDGijsTHyZD+ZnuweoG2a\nTGenR5LsdVsnnUh7t0ed7A3HIBVPhZq9+iwGSvZWO9lLKVmtr9KwG94V1SBSZZubvT/TMfnE058I\nxXwVs4JAsFSNzH7biursRyNVejnKiUs1s+YZ2SgwzrWsxgH6LmAyVLJvpb2iXtzc7O3hkv1EeiKU\n2c9kZ0aS7Bt2IzABbNRm37AbpBNptLjWdUx7GGfAZD+ZmSQmYpiO6WGUC+ULA+9Lr2T/lYWv8PDZ\nh73bpmMyl5vji899sWsbVbPKgfEDUbIfhSJmPxopgxhlrf2oMU7nwW837R0f+FLMHui7NKFhG4yl\nxgYaEFQJe9TJvm7VXYwT0vVyJjszmmRv6WQSQbMf5bGnzL4vxhmQ2ee0HPlknqpZ9daiHaYzqbpK\n68RiD7zwAF9f/Lp323RMfuHOX+CPv/PHXduoGBVum74tSvajUNQbZzRSP+hRHrh1q04uOQKM0yPZ\nv/e+9/L5U5/f3k5uIsXsgb4Tq0zHZCozNfAALUCxMUCyHwHGGWWy1219R5O9YRukEuEYZ6hkb7lj\nC8rsVbK/WBnc7HsN0NateuCEajombzv+Nh49/2jXlV3FrHB06uh1W365u8w+qrMfidSPd5Bkbzdt\n7j1176bP8xvZdjBOr9XIlqpLQzHYraiT2ffDOFOZqa73+NCLD3VVYqiEXdSLoevPKvUz+3Mb5/jm\n+W8G7uuJcRyD6cz0aMw+JNmPFOM4/ZO9QAye7JO5gNlPZaaGS/ZmjbHUWKjZ++8zHZNCqhD6fZX0\nClo5SvYjUVSNMxp5yX6Ak+aLxRd5733v3fR5Nas2Moyj2KtfG42NHb+i62T2/TDOZHqyK9n/50f/\nM48uPhq4T5nudjDOV858hd999HcD9+m2m+w7sYPpmKPDODs8QNsX41g6c7m5gZl9INnrq3zfnu8b\nOtlPZaY2NXvDNrxZ1p2ffblR5ekTRyNmPwpF1TijkUqDg5w0NxobA7HprmS/DYyTT+avidl3Mvth\nk33DbnSdICpGhfnc/LYwjuVYnF47HbhPt9zSy6s5QLuVrpdv/X/fykZjI/Qxw+5djaPbOnvye7rM\n/t5T9/Lbf/Pbgfs6mf1qfZU75u8YyuxrVo3J9GTX+9Pt9qLuUkq3M2pM65rj0JRNTFkn27j1pZvs\nhRC/LoQ4KYR4RgjxKSFESgjxX4QQzwkhnhJCfEEIMd7x/AUhxPNCiDcNszM7UY1zbuPcDbd2pcI4\ng3yOCj9s1tisq/RyG9U4OS3XtW9XJdn7mH0qnurZhMuwjVBmr2rp/aqYFQ6MHxgo2fcaI7CaFi8U\nXwh8B/0wzk4O0A77HTyy+Ig3YNqpzZL9fH6+C+M8dvEx/vSpPw3cF8bs75i/YyiMM0iyV0YvhPAm\n3vn/PiGzaPo+lipL16RF93bV1+yFEIeA9wCvllK+EogD7wAeAI5LKe8ATgO/3nr+7cDbgduBHwM+\nLIQY+OphJ6px3v/g+wdi0i8lDTNAqzj5ZkndX3q5XYwTluxLjdLVSfYtZt/P2LxkP6jZjx0YrPSy\nT7I3HdNbnBvaA7RhXS930wCtbus9cdhm1ThhyX6xtMiZ9TPelY7TdDAdk3QiTU7LeWb/qvlXDVx6\nKaX0yjf7mb1qgQ10YZyqWUWTBTDzxGNxykZ5oNfeTdrMiMuABWSFEAkgC1yUUn5VSq9O7m+B/a1/\nvwX4tJTSklKeBc4A3z/IjjRlk6ZsktEyIz3o1+pr2158+1ce/JW+vVR2mxp2IzQ9h0ldgve6+vmj\nb/8RT195eqQYJ5fMBU5EdtOmYlYGane7HfmZfSqR6m32dh+MY3VjnIPjB7eFcdR++FGOP9n7U6Tp\nmO4A7SbJ/lcf/FXv81yqLHHPiXsCjztNB8uxSMVT3n3J+HALjkspvdnDYTKc/tU4e3J7upL9YmmR\nl8+8nPtO3we0Oq1qOYQQ5JN5KmaFtfoaL599OWWjPNBx+Uu/bBCPxUMRcd2qe6buN/vOK7+KUSHu\n5LFt2JPfc12inL5mL6VcB34fWAQuARtSyq92PO3dwF+1/n0T4D/dXgD2DbIjluNeQmmx7gkY29G6\nvs5KbfCFnjulWzr/5Rv/5brqh2HYBoVUYbBkr7vJvpfZ/+Xpv+RzJz83uhm0IclepaSryew3a5cw\nTLI/OH5wU4yjkmLYXAL1PS2sLXj36ZZOPummSL9RGo7BeHocu2n3PU7+++P/nUuVSwA8u/wsv/Xw\nb3Fu41xgO6lEKtB7f9hkr+ZG9DLcrSb7f33nv+avzriWoipxAPLJPEuVJdKJNOlEmr2Fvd577Kc/\n/B81clo+9P11JvtUwj35pRJBZl8xK8SsApYFe/N7r8vyy0S/B4UQtwDvAw4BJeBzQoiflVJ+svX4\nbwCmlPJTfTYTCrfuuece79933303d77mTrS4NvKJHev6Osv1rSf7F4ovAAy1WPS1luEYTGenh0r2\nvRi8bus8ev5R7pi/w2uatR2Mowbh/fum0t3VMHuV3JKxPhjHdssbw5J9l9kbLYzTKJKMJ3uavRDC\nGxTufI7lWExlplhY95l9C7Gov1H4SQ16FlJuf5ypzFTXa6kOpav1VQ5PHma1vopE8qff/VM+cPcH\n3O138HoY3uwVvul1bGxm9uo3qr4Xy7FYri3zc6/6OX7jf/8GFaMS6N+TT+Y5Wzrr/Q73FfZxsXyR\nI5NHeu6jlNCMV8kmcgOZfSDZd2AcYRawbdhb2HvVKnJOnDjBiRMnRrKtvmYP3Al8Q0q5BiCE+ALw\nGuCTQoj/C/gJ4B/5nn8ROOC7vb91X5f8Zg9uwtRi2sjXwSw2ittK9ipt7VaM85lnP8NbX/ZWL5GA\nu6/5ZH4oZt8r2euWzpNLT3LzxM28THsZsP12CZ0T59QJ52oM0CrT7Itx+iT7rmqcVrIv6kUKyUJP\ns4f2SbLL7JsWx2ePB82+ZcaqKqSQKnj7lkqk3GZoRrjZW00LiWRNdwdOV+urvObAa/j4dz/Ob77+\nN4nH4l28HoY3e3VM9MQ4/apxWu9vPD1O2Sgzk53hYuUie/J7mMxMctf+u/jqi1/l0MQh74oyn8xz\ndqNt9vvH9m9akWPbQLJGJp4nFe/+zv2TqrqYfQfGkUbL7PN7rxrGufvuu7n77ru92x/84GBLOYZp\nM2b/PHCXECIj3Ou9NwKnhBA/Bvwy8BYppf+b/hLwDiFEUghxGDgKPDbIjqgDcZQYx3IsqmaVlfrW\nzV5x1N1q9r/61V/lzPoZ77Y6qDKJzEiYvW7r2E2bRxcfbTP7bWKcnBZk9mofemGVUSmQ7OPJ0DEC\nKSWmYzKZmRw82Q9QjQO9r4hMx+T22du7mL1K9v7PpTPZh0klbYUeV+ur/MiRH2EmO8ND33vIe05n\nsh+26+VmZu/1xolpXcFDvb/x1Lh3Zaf63wO87uDrePzS414lDnSbvUr2/WRZQLJKOpbr+s6llL2T\nfQjGaTbyWBb8zMt/hrv23zXQZ7SbtBmzfwr4M+AJ4OnW3X8E/CGQBx4UQnxHCPHh1vNPAZ8FTgFf\nAd4rB6xRUsx+lBhHpdbtDNCqtLUVszdNeP3rt/zSA6lhNwLGq8xAi2sDzaAtNop9+8Dols4PHvhB\nFtYXPHY66mqcq5bsfQO0vVKs4vr5ZD7wudpNG7tpB9635VjYTZv53DwVs0LFrPQ1+0wiE/q5WY7F\nseljnC+d907QuuXOxvXPB1AnomQ86SX7MKnnK7Nf09eYyc7wrjvexWee/Yy7/ZBkr8VdUx60rHBQ\ns98s2Stu7zf747PHOblysovZXyhfaJv92L7Bkr1WIxXrZvamY9KUzd4DtE4w2dt1N9m/7ubX8ZoD\nrxnoM9pN2rQsUkr5e1LK41LKV0op3yWlNKWUR6WUN0sp/17rv/f6nv87UspbpZQvk1I+MOiOeMl+\nhBhnXV/npsJN28M46wtoMW1LZl+twte/7nLDnZJu6wED8VdADDpAu39sf0+zb9gNfuTIjwCMrOtl\nTstRrVu84A6HUDJKpBPpqzpAG3ZJD+3Pr/M9qkToxzgVs0IhVSAei1NIFrhcvbylZG81LfLJPDcV\nbuLsxlnvdTKJTCBh2k2bmIi5r9cv2dvdyX4mO8OhiUPeVa4yYr9iIhZqzL2kriB6zkTuV40TkuzP\nl863zX7uOCeXT3Yx+6ZsBpP9Jmavkn1KdDN79V2o+9TsWejGOFWzilV1zf561a6ZQbsT1ThFvciB\nMXcIYavmtLC2wO2zt2/J7PXWMWDuoIfpVtDsA5fOA2KcA2MH+mKcLrNP5rY8UU0l+6eeNfmN32jv\nw1xubkfN3mk6CCGIx+JA72ocdWXUiarU9+//rCtGhULSZemTmUnKRrkLjfjVz+y1uMbR6aOcXjuN\n03Swm3Z72n7LdJR5AkMle2X2alIShGMc9bkM+j30S/aqLLNXsq9b9b7J/pbJW7hYuchKfSXA7AHP\n7PcWNq+KUcw+SXey7zT7fsl+Q69g112Mc71q95h96wcfj8URQmw6o3MQrevrTGWmmM3NbgnlVIwK\nG40Nbpm6ZVtmb+wQinaaDlbT6kqgCuOoZH/vqXt56MWHQrdRbBT7m72lc2zmGAfHDzKWGgNco9mK\n2TtNByklGS3DRsWi0fpIr4bZ+1M99B6gVYaaSWQwbMP7Harv3195opI9wER6AmCgZF81q7z/r9/v\n3a+CztGpoyysL3gm6a/ggfZ3CwzN7GeyM4EVrsIwDozO7O2mjUCQiCV6Ypyslg0y+/KiF860uMat\nU7fy7UvfDiR7aJv9VGaq5+xdJZXsNdk72YcN0HYy+/VqBYwo2Y9E6gcPo1serdgoumafnd3SIO2Z\n9TPcOnUrWS27JbOvt0JcY4fGdtXlcxjG8Sf7h88+zN+c+5uuv5dSUmqU2De2zzPvTi6tmmU98i8e\n4Y75OwDXECRy6O9ItStIxpOUqqb3uZQaJeZyczs6QOtvlQC9TU0ZqhCCrJb10n3YZx1I9ulJgFAD\nVVJmv7C2wCee/oR3v5rZe/P4zZwvnfcQDhDo0bLbkn2/0kv/vm6KcUKSPbjc/rFLj3Ul++nMtPd/\nVXHUS4rZJ2R4sh9PjfeeQevDOMV6FczI7Ecif1mcP5VuR+v6OpPpSeZyc1vi9gvrCxydPko63rtp\nVj+pZL9TZh+GFhp2oyvZG44R2j64YlbIaBkm0hOeCfz5U3/Ov3vg3wHBWZYHxg94E3CEEH3NppfU\nwaTFNCp1X7I3rlKyj7eTfa9qHL9J+XsANewGAhE0+45kn4wnScR6VzMrs1+qLgXeqzoRqQFH3Wqn\nbn81jt+M+q1Dq9s605lpt76+tYzfdGbanYHa+s46m6D5P5dRJHv/mICaGOYf+A0M0IZU4wDcPns7\nzy4/2zfZr+vrfQeUVbJPNMOT/UR6YjCMU6+QohBhnFHIn+yHnbbdS9vFOKfXTnN06mjfDon9tNMY\nRyWqzmqcTmbfsBus6+tdf1/Ui0ykJwKJ71LlkndiMBzDwwmd8v/NoFKGm4wnqdbNIMbJ7qzZ+ytx\noM8ArQ+V+NtCNOwGE+mJ4ABtR7Lvh3DAZ/aVDrNv/fbVgKM/2ffFOH2S/f6x/azWV6lZNeKxOBkt\nQyHVxm+d7Y2VhrmqHtTsYyJGTMQCs4c7k32pUaIpmx4OAzfZN2UzUI0DbbPPaBniIt63DFgx+5jT\nSvbNbrP3n0zV59uJcUqNCoV0Pkr2o1Ag2Y8K4+hFJjOTW8Y4C+sL3DZ925bN/ppinAGS/UZjg8n0\npGvcrQWZ1/S1Nrqwwrku9GfGveQl+7hGtWFeU2bfeeAr9Uv2U5mpnsl+MjOE2Yckey2usW9sHxfK\nFwKfu990ujBOH2a/f2y/1ypEmaM6QasZtjs5QOs/MUEQ5fhfXyV7ler9weL43HFvv/3/V+8HYDo7\n3Zfbq2Qfs8OTvb85Wv/eOFUmMhHGGYkCzL4Hxvml+3+JE2dPDLzN9Yab7Odyc1tK9i8WX+TI5JFt\nJ/sdM3srxOzVAK0v2Ru2EZ7sG+7J0J/S1/V1amaND30I/vjPww0Btp7sk/EkOElM2+pm9iNohGY6\nJn//Y3+/69I+jNmHvZ7/gO9M9pOZyZ7MfiI9MbDZX65exmpaXtJVJ6J9hX1cqlzyKlUgyI4HHaBt\n2A3G0+O5jyLaAAAgAElEQVSkE2leLL7omWMilkCLa95M4F5mH3bs/fGTf8wffOsPAvfplk4qngot\nvews7fSbvemYJGIJ4rG4l+wfv/Q4t0zeEtjGLZO3oMU0j9lnEhmOTB4JzBqezkyH/raVFLMXVjiz\n74VxurteVpjMXt8YZ7N2CVdN/mTfC+P83drfBZo5baai7g7QOk2Hkysnh96nslFmMj1JOpHe0iSi\nXhjncvUyhm1w88TNQ2/Tr17MvnPWouEYXsMzvzYaG10YZ01fo27VOXMGijGd9K3dl/qwPbOvlDRI\nmN7nMspkXzbKPLn0pHvVkpkMvLaf2fesxvFjnI5kP5meRLd0pJQIIdxkvxWM05pqbzkWqUTKDTpx\njYyWIZ/Mc758vs3sfeNFgw7Q6rZOOp5mJjvD86vPB5Kw6hw5LLN/6spTXeMR6gS4GcaBoNn7K4HG\nUmNcqlziAyc+wGf+z88EtqHFNY7NHPMSvRCCF/7vFwLPmcpM9R2kVckes3sGbd2qM5Yaw2k67uIk\nHdU4frOv2xWmC3n+Lkr229cg1Tg1qzaUwagB2tnc7JYGaNXsvVFjnI9/5+N86FsfGnp7nVKJKlB6\nGTKRpWey14ttjKPMvu5inFoNLlzug3G2MUBbKSbJ5oOll7O52ZGYvfosOnuXdDL7nnX2fozTkewL\nqQIxEfNOohUjOEA7DLOHdn23/6pjX2EfC2sL7Wocn+kEBmg3SfYZLRNq9qpsdliMs1Rd6roSUuMY\noRjH9zmCe0x7Zu977fH0OI+ef5QfvvmHQ2el/toP/Rp33nRn6PuEQTFODcx81wledXJV77kT4/jf\nV71ZYWYswjgjkdW0vOTQC+PUzOHMXpVebhXjqNl7/dYr7adOjPPss/Df/ptrsqPoteNhHDsE48R9\nGKfF7DvRRrHRbfYK49RqcGm5MVKMowx3Y10jk3eZvZSSslFmNjsis2+Zc2dXwlBmP2SyTyfSZLR2\nywN/sp/LzXnzEHqpM9l7Zu8LOvvG9nGmeCZQjRM6QNsv2Vvu4OtMdobn155nJhNM9lWz2nOAtqfZ\ndwwqQ7vn/qAYRx3T/mQ/m50lp+X43Tf+btc2AH72VT/LgfEDoY/BgBgnWUUa4cw+q2W9xG84vWfQ\nGs0q85PXN8bZPWbvbI5x1ISUQbWur29rgFatfTmqapyTJ+GrX3VNtl9Neb8fb2D7tk5MxLpLL1Wd\nfbPN7O2m3fXZ+TGOMjWFcWo1uLy6SbLf4gDtxnqSdNZN9lWzSkbLdHXC3Kp6JXt/aoPN2yVAd7JP\nx9OB5QX9A7RvOPwGPvHTn+janl+qbn+pskQhWcCwTYrFIGLaV9jHmfUz4dU4foyzSbuETKJHsm9V\n8fQafO+b7J3uZD+ZDsc4qipMKYBxfMn+6PRRFn9pkX1jAy170aWBMI5Wo9kIMnvThGLNNXuV+Hth\nHCklFjX2TkXVOFtS5wxZtf4jjAbjSCk9TKEwzjDrRjZlE93ubkY1jDoxTr3uGv9GY6On2dtNm0Mf\nOjTQvqoKkU6Mk46nu5I90FWRo6qVVNpryqab7FsYp2roJBgts9diGsWVJMmMy+yL+oZXoz6KSVW9\nkr1/TAj61Nn70rP/JKiSqr/lgX+ANh6LM5ub7btvWS3LUmWJVCLFRHqCb/ytydveFvztd5q9vypk\n0GSv9nUmOxNoHKbek0r2YVdtYb2ppJShyX4zZt+rGqdz9m5Ym+ZBNZ3pj3FUsncawWT/qU/BVx5s\nJ/t+GKdm1YjJFFOTbquNZvf6M9eFrpnZq4Py49/5ODWzFkj2o8A4NatGMp70mlr5X3MQqUqDeCw+\nsmocXXfNvtgo9qw80S2dilkZqBmVbrmTZ7qqcUKSfTqR7rpi2DBco1Vre5YaJa8zY7UmIaGD1af0\ncovMfm1ZI5G00DRYrZYYT41vaf3TMA2a7HtiHKd3nX1GywQ6V/qT/SDKalleKL7AnvweUokU6yWT\ncjk4nrBvbB+Xq5fDMY4PM2zWLiGjZdozTbPT3mNbGaAtG2V0W+86GeuWzkQqnNn3HaDtMV6wFU1n\np1lv9L4SVsze0YPJvlSCeqtlgwoaXcm+dYxWzSoJp8DYGCQSXLco59qZfeug/I9/8x95bvW5QLrp\ni3GswcxeIRxwR/GHHaT199EeFcbxzF7vjXEU/xwk5arVfrrq7EOY/d783i6zV1c+WlwjEUtwqXKJ\nudwciViCqm4wOdfAaYy+9HJ1OYnQTNJpWC67Jxw1gBe2bN8w8pJ9yADtQL1x7N519irZq+/In+wH\nUVbLcm7jHHvze92JZbo7buG/6thXcHFGGMbxT/pRyT7sCrBhNzyMA4QP0PYrvew49lSzsa5k77jJ\nvle7hEGqcbarzfrjqGRv1YPJXtfBkC2ME+/GOP7Sy4pRIWa7Zq9pXLco55on+6JeZKOxsWk1jsIq\ngxqMKrtUmsnODLWOrL+P9nYwTqEQxDim2cI4fZI9MFDNuUr2nd0ZO5N9w26wJ7+nq/zSX56YT+ZZ\nLC0ylZlqJf0aew7oWHpvs98qs1+5rCHiFuk0rFRdsxdCjKTjac2scWDsAGdXl3jTm7pfW6lvNY4v\n2avfW88B2iGTvSMd9haCZu8fPN4/th8gMKlK7af/RKRO0GG/SzX4Gmb2qmWCGsTtVFiy7xxQVurH\n7PtinFEm+03645imdM2+Gkz2jQZYshvjeDNoffisYlbAzDM+7ib7yOyHVM2s0ZRNykbZNfumRSKm\n8fWvh2McdYANavaq7FJp2CTq76O9nWQ/NdUD42yS7AdBGqHJXrVLiAcnVe0thCT7RtGbnp5P5jlX\nOsd0dtpLtHN7dRrV3gO0W2P2SdaWk8iYSSoFa7UNxtPjQHdt81ZUs2rcMnULS5XLnDrVvj+M2W+W\n7MdSY94JbTNmP4hUaaZK9jWjlex9CFMNVKrndg3Q+gy0F8rxl15Cn2QfhnFC1uZdqiyxJ79nqNLL\nQevst6vNSi9rVh0hExj1VFeyN2WwGqdX18uqWQUjwjhbVs2qUWqUkEgv2RfXNN72tvBLyWHNXpVd\nKuW03FATo1QlDmzP7CcngxinYTQpNUo9t+cl+wFMr2E3mMnMhGOcjklVe/N7wwdo0+1kf27jHFOZ\nKc/Qpvbo6OXRDdBaTQtpJ8lnNGzpJvtircREyj3hjILb18wat07eyqqxxMZG+/6hqnHibbMvG2Wg\nA+OEVOMMok6zrzdMdD1YZz+dmSYVT/XujeOrXe81SNuZ7BW7hw5mP2Cd/VJ1iZvHb+4uvbR6l14O\nWo2zXalmaL1UMorEzSl0na5kb4ve1TidGMdpRBhny6qZNc98So0SVtNibVmj0QjHOIqdbjXZD7tu\nas2q9cU4Ty49yX/9xn/1bn/0o/A3HV2E63WYmAhinIYsI5E9MY3/wN5MuuUme381jsI4iVgCy3GX\nmDNsgz35PYGDQkrZlewXy4tMZ6bJaTlMaoxP6VRLo+2NYxtJ5mfdgy6dhnW9nexHYvZWjf1j+zEd\ng5pZ9w7MTmb/od9Pops9qnFahupfWMPDOK0BWiklVbO6tWTfwji1hi/Zt/ZNCMFNhZvaGCcePqkK\nNkn2iQzz+XlmsjPBE0TKN6lqwAHapcoSN0/cHF562a8aJxGOcfztILarqcwUG42NnmM9ZWudpDNJ\no0FXsldm36sax49xnHo72UdmP6RqVs1be1Ql++XLLbMPwTg1qzYUOuhk9lktO9RqVVWz2hfjPLfy\nHF998ave7a99zZ005Vcoxom1O0qGadgB2rHUGE3ZDCAbhXEM22at6C5lN5OdCTD7ilkhLuKBjoLn\nNs4xnZkmHcuRLtTIFBpU1zcfoDXs8HYMl6uXAwOIpmMibY1C1kVM6TSU9DLjqRGavemepKeSeyC/\nRKnUfm2/UX79xHDJXqVlNUC70dggp+UCaGgzdSV700BvyC7EtG9sX+86+/gAyd4/qerfPB94TCX7\nYUoveyX7ht2gkCzQlM2u6rGrhXESsQT5ZN7zkk6VzHVSsp3s1XHlT/a9qnHU517SqzT1PLlchHG2\npJpZ8wxCMfsrl1SyD8c48/n5gc1+o9FOjDA8xqmZtb4Yx3CMwA+sVOpuixCGcQyxQT6ZH80AbeuA\n9VeI+DHO8wsW//7/cZPqVGYqUKK2VFlib2GvdzuXzHGu5GKcZCxLKl8nkdEpr2dwQhYN8xvNp575\nFO974H1dz/nxT/44XznzFe+26ZgImSSttZN9ySh7KKQXWhlGNcv93iYSe6HQRjn+ai8A20hihXW9\n7GD2nRhHJfsrtSvM5+eH2rfOZK+bJrZjey2Alf7xy/6x1/GxL8bZhNlDsOwSfHX2Qw7QHpo41PWb\nVKbd6/jwb1+Lh7dLGIWms71n0VbsIhmCGEdKia6DE3OvMNTvzl/a6r+iWi1X0CggRIRxtiR/si8Z\nJQzbYnlJIxaDOOEYZy4357Vo7dRqfZU/+c6feLc7maS/ZnoQbZbsDdvwLvEh3OzDMI4ZK7qDXSMY\noFUHtX/Q0N/iuKZblOuu+U9lpgLpe6m6xN582+zzyTyXKpeYzk6TFDlS+RqW1MkmM1y50v3a/mR/\nvnw+tB3F94rf48unv+zdNh0T0UyS1twrt3Ta7Sao2gz0mujUS1/+sjsr2S9VRTUe3wv5ttl3NkIz\njTiSZtfkPn96Pnd6jNVyN7OvW3WuVK9gFeeHWkxei2nERZw9+T2tZG9CPNizB+CXfvCX+L493wcE\n670HTvY9WiH4/6bfsoSdV9VLld7JPp1Ie8dHpQL/43+0H+usxlEBTk1WHJX6lV9WrHVysUl0Pbig\neqMBzXj/AVrDNpBSslatkBZuIIkwzhakmP1MdoaNxgZXVizGCxr5PAgZjnEm0hPERCzUCL914Vt8\n5ImPeLc7f8zDYhyVEGF7yb4T4zjaBvO5+c2T/SAYp5WQOuvBVbLXDQvddBPWZHoykH46k31ey9OU\nTaYz0yRlDi1Xc6t9xtMsLna/tj9VLlWWujBO2ShTNsrct3Cfd3JWZp9JtZN9xSwHzH6YZP+Hfwhf\n/3rwPjU/Yly4yV5hHLVak5JlChKi+0rC35Lgr7443nOA9lL5Ct97Zt7b/iASQvDIux9xr57iSRqm\nCTGLhOiNgjqTfYDZ92hZ0WvwFdon6WEGaC9XL7vJPoTZZxLuRLOG3WBhAf7gD9qP9R2gHRHGgf7l\nl1WnSCEx5c15Ue9P19tmHzZAm4gliIkYdtNmvVohE3eDX4RxtqCa5WKcQxOH2GhssLRscWCfRjoN\nMRmOcXJarmcVyFJlKVAV0PljyyU3xzgf+pDbqAyCyV5NnfZfURh2t9l3tjIOwziki8xmeif7oQZo\nWye0QLL3MfuGaaFbPozjN/uQZA9uSkrILFq2jm7rzE1mOBfSVTqn5bzy2aXqUtdl9PnSeY7NHEMg\nOLXi1kB6Zp90r9xSaUnNbpcvDmv2J0+68xb8UvgtTzDZX6xcDPRfMU1I0P16fkNdOJXFEQaWY3XV\n2V/cuAK1eVaGbLl01/67vPfasE2ImyRi4Wb/hjfAlUu+SVVNsxvj9GH2YSqkCpSNcle1jFLnd9Cw\nG9SsGnsLezdN9rVaO/V2dr3sYvZXCeNUnXXyiUmkdPdNvb9GA2Si9wAttLn9hl4lG3d/oy9pjCOE\n+HUhxEkhxDNCiE8JIVJCiCkhxINCiNNCiL8WQkx0PH9BCPG8EOJNvbZbM12Mo8z+8orFzftdsxfN\ncIyT1bI9zf5y9XJgJl/nD2oQjLOwABcutF9PDV7GY3ESsYT7gzDh4YfdH3PDbnimPCjGIdMy+17J\nfpgBWksPoAX1d2pSVcNyk30qnmIyMxkovVyqhJv9dHaaeDNHIlOjYTfYO5vhe9/rfm3VRkJ1cfRv\n+zvfgWfOL3Lz+M38xNGf4L6F+wC36gQnSToVIy7iJFMOdXtryb5UgosXQ8y+VUWVJ8jsL5YverNT\nwf27uOieWOVHJadOChLNgleq6P+sL5WvQHWe5eGbqQItJmy5GKdXsn/mGaiXOiZVdWKcTZh9p/LJ\nPKv1VVKJVOhyk37ju//M/VyuXmY+N9+1chO0f3/pRBrd0qnX20Z4tQZoAabSQYzzxKUnvCvNuiyS\nj02RyRDg9nW9CQn3c0rGugdooV1+WW5UyCZe4hhHCHEIeA/wainlK4E48A7g14AHpZS3AQ+1biOE\nuB14O3A78GPAh4UQoa9Rs1yMc3jiMCWjxMqaxeGDbbMPwzgq2YeZ9lI1mOw7043qONhPKytQaz3F\nn+yhfTn93e/Cu9/dTuAlo4Rtu383CMYhvcFkci6wUlHgb6whmX0i09XDRbVLMG0LvVUCN5Yao2bW\nvANuqepOlFHyJ/u4kyOeqbnL282Hmz20y/gUxlFXPr/1W/DANxc5MHaANx99M3+18Fft92QnSaXc\nAbtkxqTu+AZoh5hUpSZMdV5NqWSfdfYGqnEuVi56s1NBJfsQjNMaBK1W4dw5iNvuIK0fWei2zlJl\na8leyeXECuMkux63LFhdBZzwrpfQJ9lvwuxX66s9H1dm+M3z3+THP/njvOcv38Pewt6u9hJSysDV\nTsNuDG72OzBA68c4/+Fr/8ELGLXmOrn4ZJfZ61YD7BTIWCjGgXb5ZcWskNPaZv9SxThlwAKyQogE\nkAUuAT8F/K/Wc/4X8NbWv98CfFpKaUkpzwJngO8P23Bnsl/fsDh8szL7Hhgn2QfjVJcCyb4z3QyC\ncfxm72f20DZ7XXfTf6OVcjYaG7TG8AJmb1lud7xCoRvj5OOToUkJfMl+uxgnpmE6lpcGYyLGRHrC\nQ0+Xq5eDzD6Z954j7CyxlItxDt6U7mn2+WSeslHmSu0KiVjCS5nFIlxpuGuK/sPD/5AnLj1Bzay5\nlRBOknTaPei0tIXerGwp2auB2V7JPuvshcKlYLLvwDgx2f16asr8c8+5t+NW2+w7B2ipzW3f7OMW\n8ZBkrwbFY074soQQnuz9JhymfDKP1bR6mq2a47JYWuTNR98MwKGJQ8RFnKZsD2ir9Sf8jQL9Zt9v\nDdpRJ/vOzpdlo8zF8kUA6nKdfCIk2Vt1sLIYRvBqxn8yVRinblXJa24YesliHCnlOvD7wCKuyW9I\nKR8E5qWUqkbjCqBq0G4CLvg2cQEIbVStkv3B8YNUzSo2BpPjrtlLZ3iMs1RZCgyihmKcTQZol5d7\nJ3uVXnS91d+m0jZ7lR79Zq/rkMlAOh3EOInCBtnYZM8Uu5UB2jCMI50EjrQC5XqTmfYgbRizn0xP\nEhMxhJ1DpNxkf3h/n2SfLHBu4xw5Lcd8ft7b9vo6rJiu2We1LHO5OW+RbWlrbrKPaWgpk4Ysb4nZ\nnzzpjof0ZPbWEZj8HsUN6c6AlI5Xzw8tjEN39Y/6/E6ehFtuAWGOezOe/Wa/om8P46j3qqVN4nSb\n/ZLq4+YEFxzfbFKV1bS8qpMwZbUsAtHTbNV+LZYWeeXcK7n/Z+/n4z/1cYQQgXTvv3JOJ9Loth5g\n9lcz2fsnv4E7SfNixTX7BkUK8UnvOPSSvR00+85qHPW+DMegZlcYS13/GKfvGrRCiFuA9wGHgBLw\nOSHEP/M/R0ophRD9CtBCH3vy009St+p88Ykvkq5msPLrJOOu2eOEY5z53Hz/ZG+31wft/LENinH2\n7Wu/nmL2EEz2AOulttknW8dbp9lns0Gz13VI5IvkYr2T/VYGaP3VOCpR1SoaxC0avoTlL7/sqsZJ\n5r1JaNLMgeZW4xw5mOH8eXAciMeDr59P5jmzfoa9hb1un/rWgPv6OiRt1+zBXcVppbbSMnsX4yTj\nSeJpHQfTK8MbxuxPnYLv+74QjNP63mLWODEnx1LlEhcrFfYV9gUYtWlCRvbAOHHX7O+8E+4zg8le\nrVq2qm8f45iOydik1dfspd3uBtqZPMNKL/tV4oBbEZRP5ns+R5VeLpYWuWPPHcRj7Yl3avKRCj5+\nsx8K44w42atFy5XKRtkze511xrTuZN9wBNhZGo32/I5eGEd3Koylrw3GOXHiBCdOnBjJtjbDOHcC\n35BSrkkpbeALwA8Cl4UQewCEEHsBlW8uAv41xPa37uvSvp/aR/5Ned7/79/P5LEZRH4FLaaSfW+M\n4+9EqCSl5HL1MjER8xJxZ3nXZhin2YS1tc2ZvTL7YivZlxqlQLL/6BMf5VLlkpfsUynXkKR0HxfZ\nImkmeif7Vg3yUAO0iXayV9PUKyUNEbcxfZx3KjPFan3Vq7DwlyIWUgVvAo40sshE3W10lcswNeUO\nhnaqkCqwsL7A3vzeQLVPsQjFZtvsZ3PuSmFm06RpuRhHi2s4qTWSsuCZ8DCTqk6ehMI/+AsuOt/1\n7pNSesneMCCrH2XJXOBC+ULXSkgK44QO0CZSnDrlmj2NboxTM2usm26y347ZW02TwrhFjG5mr8ze\ntoX32+vCOCHJvl8ljpJaarPXfpmOyWK5/f0p+b8fPyZVpZcBjNNZjSN2ONk3Osy+hXEaotjD7Osk\nmtlA2g+rxjEcg4asMp65Nhjn7rvv5p577vH+2442M/vngbuEEBnhHpFvBE4Bfwm8q/WcdwF/0fr3\nl4B3CCGSQojDwFHgsbANqzr7ycwkmdg4MruCFtfIZNw0E5bse2GcdX2drJalkCx4GKSr9HITjLO+\n7hq+x+zN3sweoFQzvGnapRLkclA3TH7lwV/h25e+Tb0exDiNBiSTIFMbpOnP7CfSE0MN0HZinHQi\nTWVDQ0tZmM22Qbx85uU8feVpr8LCn3Rfd/B1/NFP/hEATSNHM1HzTpiHDxOKcvLJPKfXTrMnv8cz\ne8OAuu5Q4ZI3IDqbnWW5tozpuGavkr2traHJdm+ZQSdVbWy4/12a+izPaX/u3W86JjERcwenTZho\nHmXFWeiqxLFt97sOY/adyb6pj1EySt5JNJPIsFxbJkachMxtC+NYTZPChEVM9k72pum2PT67cbZ7\ngDYk2Q+SmgupwqYDtOdL57vM3v/9+AeBw0ovr1WyV2saXyhfwGk6WKJCITkeMPuGbWBRJyF9GCek\nGkeVXBuywmT2+sc4mzH7p4A/A54Anm7d/THgPwM/IoQ4DbyhdRsp5Sngs7gnhK8A75U91tdTM2gn\n0hNkxAR20pfs7XBm36vOXvFndXkJ3cx+M4yzvOx+kYMm+0rdYD4375n9/DysZh+lYlZYra8GMI5h\ntLGOoxVJNvsk+1Ynwc1MT13Wd5VetsyqtK4RT1qYvmnrrz34Wh45/0gXwgE3xbxi7hUAOHqOZrzm\nHdBHjvQ2e5XsJ9NuaWexCOSvkJJTnjEpjGM5lmf2WkzDTKyhNduLdA+KcU6dgpe/HCxRYUl7xLvf\nj94MA+YTt1GMnw6txAGINcMnVdlGiuVlOH4cnPoY6/q6x8GzWpbF0iLj8Xn272d7yV4a5MdNRB+z\ntyw4PnecUyunBkr2/QZnlTbDOIZtcK50rjvZJ4LJPsDsNym93Ml2Cf5kXzWrJONJlmvLrOvraM0x\nklqMdNo9BlPxFFXdRMu6Zt9otN9X56Q1tei4SZXJ3Eu/Ggcp5e9JKY9LKV8ppXxXq9JmXUr5Rinl\nbVLKN0kpN3zP/x0p5a1SypdJKR/otd3V+ioxESOdSJNqTiBjbjMo1+y7p2x79dNhZt8yLzVQBINN\nqtJ1dwFwcA/agwc7qnF6MPubb4Zaw2AuNxcw+7Wp+9Bimmf2CuPopslXX/gamYw7gzbp9Gf246nx\nTTGOSppCiEBHT3X/xrpGTLOwZDsN/tCBH+Kb57/JxcrFQNllp2w9iy3q3kHZK9kXkgVeLL7I3kIb\n46yvA+OL5Oy2UagF303HxDHbyd6MrxF3gsk+zOwbdoMHX3jQu33qlGvEJhXWUk96V2z+qzHThAPZ\no1ST3clemb1ohgzQ2gbnXkhx7Bjk82DXxrlSveL9ltQCJGPxeQ4e3LrZa7EktjTJjYUn+8uXYXy8\nZfazxzm5fLJ7gDakMWCYkeo6PPQQgb/rh3FW6isIRGBAWz3mNRLzjQ2EYpyrWI3jT/Zlo8x0dprJ\nzCTPrT5H0plE09xjUSGbTrPvNUCbSqQoNorEpMZ4wR3efMlW4+yklmvLXgtizXHnZKlk79jdKxb1\nm0GrasYziYyHcbqYfQjGeeIJ+Ff/yv33ygocPhxM9r0wzrFjUDfdtsElo+SZfWnuPn7y2E+yWl8N\nYpybHuSf3f9jaNNuoZJwMn2Z/SDJ3n9Qq2TvNB2asokW09hYd1eDsnwYZz4/z3R2modefChQidMp\nq57DElXvyqEfxrGbtpvsM5MU9VayH18kY/rMPhfEOIrZG7E1EnY72fdi9o9dfIx/e/+/9W5fugQH\nDoAhK8SaKR676JLCzmR/y+RRjPxC6OxZcM0+LNlfXExx663ud+fUx7hSXfbMXv2mcsxz4ID7uxmm\nP45STCYRCZNUxkI0w5n9gQOu2d8+ezsnV052D9CG1NmHTaj67nfh53++fbtfstfiGmfWz3Bw/GDX\npKtOZh+GcaR0EVkYxlEBbtTJfiw15i3RWDbcSXr7Cvt4dvlZNGeKRIIAxqk1WmaPi3FU07POZnmp\neIrV+irxptvxEl7CGGenpXqpxyw3Qahk37SGK71Us0FVpYSUsmtiiUI8/olMlQqcPese/MvLrcRe\ng2ZTBmbQQrDi4Ngx0O1GAOOk976IrRX50Vt+NIBxEgmQBx9BSkn9Ff8dzZnAMHoviKJbOuPpwZK9\nP23WrbrHdIUQFFc1iFkQN9BibYN47cHX8oXnv9DX7M1ajlpzzdtWv2QPhCb7dKNt9nO5OS/Z26bm\nJXtdrBGzO5h9yPu+XL0cwBXVamu5R1lhuvwGHj3/KNCd7F82dyvNsRc5Xzofnuyd8GqctSsp9u7F\n7XLYHOOyz+xV5VBOzjMx4ZrIMP1xlEQzRTxpkkha0AzHOAcPuvt6fDYc46gJhn5SGjahyjDav3Nw\nTxL9kn3dqnchHPWYx+xDSi/rrQtny+rP7OtWfaTJXotrpBIpalbNM/v9Y/t55sozaHY72fvNPpGt\nkUqsVUcAACAASURBVKSd7GtWDS2mBU5w6USatfoacbsQMPuXLMbZSXkLghvBZN80h8Q4itm3kr3d\ntLtqjRUy8k+8qlTcFPK977XLLmMxqOgGMRHr4ncq2R86BI40mEzNeZOqNmb/iuTijzOXm2NVb2Mc\nAHHwEd6275dZP/JRks3JdproNUCb6h6grRiVwILp/kthNYPWbwbrqxpNYZFIN0jgM/sDr2W5thxg\n9p1GblSzVJw1L331S/aAV41TbBTdssvZRRL1DozTKr10jDazr7OGMDdn9kuVJa8hGbhmn8+D3qww\ntf7jPLLocvvOZD+ZyyEa0zy9/HRosscJnlyasonVtFi+nGRv6+NJMRbAON7/nXkyGZid3SLKcZLE\nkyZxzUJ0mH2z6U6qUsn+2MwxXii+QM2qBZJ9TMTIJDJdaxB3pmbTbP/OwW1614/ZA6Fm34/ZqyAE\nYFrNwOpb0DZ7y7GQyECCVvt44QJb1lhqzK2MM0rtZL/yLAkrPNmLwmWyco9n9hWj0tV9VCX7mNU2\n+wjjbEGZRMZL9lJvmX0r2TvW8Bhnb6E9QNtrunjnalWVVlg8fdo9YGdnXRNZ2agFBmcB0vG22Wez\nkEgbJM12sl9OP4I4+wZvYXOFcQzboDn/HX6s8Kto1gxp2TL7PgO0Ycn+49/5OPecuCfwvE6M418d\naH1Fo4lFIm0Ql8FkD3jJfnERXv/64D40yjl32cDWZ6gGIjvbQag2B3vye7yumsUiJOdfJFE95D1v\nLjfnYRzLaM+grckBzb665F2mg8/snQqFKz/KNy98E6fpBJK9YbjjJcnKbTRlMzBG0Tb7YLJXzPby\nkvDMPiPGWa61zd4bZ7LbZr+VipymlSSumcSSJjhB41tbc69c8nnX7NOJNAfGDtCwG12G1Ilywkov\n1fs9fbr9N/2qcSDc7LuYvSq9bB133niX4YYOf0pWZq8KJzoR0f33w7/8l6G7NJAUty8b7mI4+8b2\n8cyVZ4hbbrJXA7TJeJK6YULhAvnmPu9YrJrVwIkU3PtX9VWwIoyzLeWSOY/ZO7UOZm+meHLpSX7m\nsz/Dp5/5NDAYxlGXk70mlvirVqBt9gsL7gE7O+uWUK6UqwGEA8Fkn8lAImUgq/Mesy/GTmNffpln\n9uqk8O2lb6OVjmGUxzi49m7SchLT7J3sG3YjlNmXjXJg8RF/slfvy3+SW7mSwMEiljSI+cz+tunb\nmMnOcFPhJsAtYax1FCnpZRdVqO3H427K7Ox+qdjvWGoskOztqZMkird7z/Pq7FvLEqreOFVnDWls\nPkC7VF1CIr0TdbUK2VwTo1knVj7E3vxenll+JpDsTdMtdc01jjKd2hO4yvMne7WYxQdPfJCyUSYV\nT7G0BHta54Z0bIyisdZV2ZU0t5fspZ1EaG6yxwka+NIS7N3rpkiFDNRiJl1m39EyIYzZq/e7sOD+\nfyw1FhiP8qtvsvcx+87SS1WNA1BrdFcEeWbfo73xygqBNYOHlarI8TP7klEiYbaTvUrxdcPEyV1k\nTOxrD9q2qng63+9qfRWMlwbG6TuDdieV09pmb1XGYb6d7Kcvv4aP/fOP8fjFx/nkM5/k7cff2Rfj\nqD4vCuP0mljSOUhbqbhdKVWyn5tzzX61FJLsWycSZfYiaWCuuxinUJJcthawLh9lOmOzVl9Dj7nP\ne2TxETIrr2V9HV628T4KuX/SP9nbemg1Tt2qB3rG+09oaqLPty58i1fN3QHA6rI7VyGTMohJrykp\nQgi+9q6vcfusa8blcvcs1Ho1QTKWDBjczIw7WcqvQrLA3sJehBBeK4YrxSrW1BVYPxL47JLxJGv6\nGlNGuxqnYq8hG74B2kT4AO1Sxa1DrBgV9/uvQjxTJR3PYpkx7thzByeXT2I37a5kP2YfJa11T6gC\nXIxjG5SNMvc8fA8Vs0IqkfLMFiAXH0Mig+M/iQyJxjzpGfc3o8zetl0zGERNM0ksYRLTLGRHsveb\nvdrX47PHue/0fYEVrSAk2ds66Xh4sldm/2/+wb/puWbrpsnebid79TrpRJqG08Y4ddPoSsmJWIKG\naXPhik4q1m32a2t4Paa2In+yH0uNedguZkx5zL5Uwls0xspcZMJpm33F7MY46USa1foqzcatEcbZ\njnLJnIdxjFIw2duNFG992Vt5+yvezvc2vsdv/ccmhm2QSWT6V+O0Bmh7tXgNwzivfrV7ECiMk8vB\nerXalXw6k72IG1SXXYyz1rhCOp4m2ZwgF5ukZJSo1hzP7AsbP8TGBhTSWeYTR/sz+x519qqXkP95\nyoBUWelnvnMfj/7Jm7l8GWqVOAJBLFUn1gweeK+Ye4VnGpVKN56p1SCr5QKfYT7vJmq/Dk0c4vU3\nuwxItWI4V3uOaY7R0IO9FeZycyxVlrAabWZfslaRjc0nVS1VXbNX3L5ahVi6Qi5RwDDg6NRRFtYX\nAs3rVLK/qfmDHEu/LrA9ZX7Sdk8uG40NCskCH3niIyTjyYDZ5zX3ZOQ3+7v230W6fmsA43z+8/DT\nP9216z3VtNxkH0tYSLu32asUefvs7V0GCoMn+7m5NsaZzc32XFJRGd6BsQNdj3Uy+84ZtG2ME57s\n/+JLNj/8Rp2L59wWHH5t2+xbyb7UaDN7AGF2D9DqhomZushkYp93LIYm+4Sb7J16IcI421E+mfcG\naPVikNkr8zk8cZizG2e5uFIjITNeXw+/2VfNKnbTZjw17v3oejH7MIyjzN6PcYrV8GTvN/tmzGD9\n/Ay6pbMef44jE7eRSoFlxhlLjVFsFMlkJI+ef5Tx8g9RLLpYR7VP8K9x6VevGbSqS6j/eX6MUzEr\nfG3xAYqP/QTvfS9MT7ufp0jWEE63SSiVy+7gnf8H7Jp9NvAZhpn9sZlj/Mlb3KUgC8kCuq1zwX6K\nA+nbu04gs9lZHOlg6W1mX7FKOPUOZt9aF/aLX3T3C9xkf2DsgGdq1SqIVJVcsoBpumhqYX0hUEGl\nkv2RxA/xj/O/H9gXdSUjLRfjFBtFDk8e5he//xdJxlJUKu6VDEAu0W32977tXkRtTwDjfPSjw7F7\nx0pC3EQkTJodZn/5smv2yaQP48weD1TiKA3K7F/xinay7yctpiEQXe0loJvZpxNpvvhF0ER7gDab\n7W329YbNH35EJ5vIculScNvr61uralLqleyF7mIcP7MvGxWsuNtqXCX7cqNKTIZjHEfPvyQwzrVL\n9lo72dfWW6WXsaDZF1IFMokMVxpnSUj30+40+5XaCnO5OYQQHjvsxezDMM7x4+5Bur7uHuC5HBTr\nmzN7RxiceT7jHmz5J7ht+qi37zPZGYrGKkb6AlpMY4x9rK+7f5dM0sY4HSlWNbzKJXPdGMcOYpzO\nAdqzG2fJOvt4z9sP8PDDbpLTYhoiWSXW7D2jsrM9c7Pp/jufzAU+wzCz90sIwUR6giupR7lt4rg3\n01hpNjcLgNlol14C2PVwZv9zP+fW05uOSckocWTySCDZN5MVCppr9kenjnJ67XRosp+Y6DYR03RN\nSdqueRX1IpPpSX7z9b/Jr/y932Vuzq3KAiikc8SIdZlXo+F+n3Nz8Nhj8LWvtceABpFtJBFxE5Gw\nkPZgzP7Db/5w13ZCk31INc6tt7onpc7vpVMT6Qk+9TOf6kq50MHsLZ1UPM0//aewsdpm9mNjuKuj\nxbsxjuXYxFI6yVjG7dXv09qa+72GLW4/iMZTbWY/nhpnPDXu/hYa3ZOqrjTOkXH2kE3H271xmg2M\nejfGadgNHL3gNmgkwjhb0mxu1hskrKwGk73/B3l48jBX5LM9zX5dX/e6NaqFJXoNAoVhnIkJt7Rw\nfNw9a+dyUKr3T/bptMRqGjz73RQTqQmMmce5fT5o9hvmKmVtgdumbyOddgef1Ixab4C2x5qeYYhH\nJXtVkeK/jFYGN7X6Zl73OvhP/wmOHHE/T5msQp9kX+no2Fmvuykol9wc43RqKjNFafzrvGpvd7Kf\ny84BYOptjANgV7snVem6e3Wh6+54zFxujvH0eNDsExUKqRbGmT7KwtpCoMWFSvbj490Df6bpvp+m\n1cY4E+kJ8sk8r07/Ew/hAOSygnRsrMvs1Ul/dha++U34yZ8czuwdI4mMG4i4RdMKJvsrV9xJen6z\nT8QSvO3427q209kfJ+yq1jTdfT10CM6c6b9fpin4xK+9I/SxTmZv1NI0GmDWW8dG+kUq/8dPUW5U\nQpO95dgITScdDzd72Pw31kuqzXG5taaxEIKj00eJVW/qKr28bLxIXu5rX2W38Fis2Y1xgFazvtb7\niDDO8PrET3+CH73lR3EcqLeSfSKWCCR7gCOTR1iNPUvMaVWIJDIYjuEtolBsFL2B3ozWGqAdAuMU\nCnDbbe5BC67Zl/VaF7P397NPpCzisTh798TQmhOI/Y9zbOa2gNmX7VVKMdfsUym6MU6i3adcSZ2k\nwgZva1YNq2l5++/v/aMm+hjP/gTHj7uzJe+91zVUmai6K/L0kEr2Cm3Uaq4RZrXsUMkeYDI9iVV4\ngR840jvZG/U2xgEwq0GMY9iGd+DrervSSs2ShFYCjLtmb5ru4hUxEePsxtmuapyJiX5m38Y4Cin6\neT20ZkGLcLNPp9u/m/e9b8hkbyaRMXfxEqfD7Gs193fpH6Dtpc7+OL2YfTLp/s43QznVKjwQ0uRk\nfd2tkvMz+/K6+zpGLUPdbJB41f/f3ptHSXLVd76fm0vkWpVZ1VW9d6lbUiOphUBqJLEJaIQACRmE\nx+Mn8XjADBgM4gEDZpPwPMSZMdhmgOHhsX2eQTDDMbLBI3GwhQcEps8wAwhJSKANdWtt9V7dtee+\n3PfHzZtxIzIiMzJrb8X3nD5dGRkZeTOWb3zj+1vu7RS2/RPf+O1/7thf8UicWqMOMXWOu8l+qpVo\nFsS3lxIee8y5TCv72fIspdlhymX4xbt+QWRmt8OzT0QTnKo/xZDc5uhxDyA8bByAhLCFX2jjDIB4\nVFWrzc1BLhvnky//pPKJXWS/K7+LmcRDROrqIhZCkInbfW68lH0/Ns7QEOzerR7HoUX2lYWuyj6a\nUI+pe/dCfSGHzD3NbtPGSY0x3zjFKXmQ3aNqubZxNNnrJksm9E3Kq22A/r3atze92Xg0zkde8lGO\n3P0Szj9frR+LqeXNeH/KvlBQ+2BQZU89wYt3n91u66yxMeNS9lFFcNX5ThtHE0GxaNdQDFlqouxG\nQ+2/CmpCiWqVtop74PgDHdk4vcheTxyfT6inSzfZp9OqsMpP2e/eDTfdBC97mdqXQVsn1MqJFtlX\nO5S9vpGYnr0fzh45m/uP329/1seztyw11l5kX60q5er+3i9/GR6413KkXk5Pqu8pzScpVkuw+062\nPPyn/MvR73pm49SaNWSsRMbyVvbDw8HI/qGH4Oqrncvayr4yx9/8xTA/+IESVDpDylT2M/Iw+YhN\n9prURcNb2SeFfY6GNs4iMDOjLsjPXfU5VRGY6iT7hfRDiLqttE0rZ7o0bZO9Vt/dUi9rnWR/3nnq\nsRkU0S1UOpW9SfaRuEot27sXFloW1Lmj57Y7XI6lx1honuJk40D7JmDaOH4BWu3De/n5+ialM3Lc\nXT3fs/PzbNsSI522PxOPxGlE55G13sq+g+zjGUcKXxCyz8ZGiEydTzoVJR53pnSOp1vKvuT07Jul\n4fbF4yZ7beO0lX11vj2+heo8udRQ+zt2j+7mieknOpS9n42TyUCzpVSnS92VvSX9yX5oCD77WUUC\n8XhvT1yjXrZoCjUHbb3qJJlyWZG9aeP44foLr+fOA3e24znlRqfQqVT6I3ugnUap8eyzStmbAdrT\nJ5IIAcX5JJPFkzQ23cumQ+/n/9j5f3eMISJiNJp1mpES2aST7KVUYmjXrmBB2sce68wgyyWUzTdX\nmaMym2tnBtVqdBRVSZrko7aN045PNDs9e4BU1Cb70MZZBDTZa3Qo+5FdVNNPQc1msbQxgclUaapt\n4/QK0PrZOG99K3zxi2pZJgMLte7KPmLZyn7qaB6rvJWslXXYOEVxiuNVpexNG8eyWp69B6HrR3Cv\nG0GhVlA9ZuanaTQ6G709/LAKNpuIRWI0ogs0u5C9VvamjZPJtGycPpV9ilGS82oQ7uM4nhknKqLU\nq1Esy/bsE8ImbJ3aZ5J9u+9RVCl7XT07X5knlxyiVlNksXt0N0CHsk+nOwlYK/tGVWX/mFagl7KP\nN3O+AVoTQ0PBrZyaQfaNqlPZ90P2G9IbuPrcq/nWg98Cuiv7kRFv5Ww+henvc++zI0dUUNm0cSaP\npdizB4ozKU6VT5KevIKEyPCH536OL1/9Zcfnm/UYkXidSrPEUCrVtupA3VgiESW4gij7gwc7a0NM\nZV+eHW6P31T2pmUzZm1vn6PxSIvk6942TjoW2jhLgtlZpb40vGwchISqrbSPPz3MPQ8qCTBdnu4M\n0HZrl+Bh46TTqkIUWpOQuNobg5PsRUwp+0suUdW/2epux9jH0mOUIyc5Xnm6rfibzQDKvqXWvfLN\ni7Ui24e38+X/b4Zbb+3Munj4Ydizx/ER4tE4NbGADODZeyn7fj37XYm9bJh9LWA/NmtszGzEiioL\nRwh10cUiMWVntX6qVvaaCLSNw8IWbv2rYSfZV5WNownxeRueB9Ch7PX+NtEme9PGSfrbOLG6v7I3\n0Q/ZV4qK7GWkRr3aaeOkUsE8e4A/2PsHfPX+r6rPerQP1vtCCw03XvMauP9+e13oVPZHjqj6F3Py\nkhOHk1x+OSzMqn0zcupaYjGIyRS7RnY5Pt+oxojGVQXtcMqp7E+fVqnCQW2cAwc6f0fbs6/MUpoZ\nbp/PWtmbNg7AWMK2cbTN6b5OtI2TjYc2zpKgl7KfyE2AFMiKTb7NhY3cf0AlNU+VptqP4D2LquIZ\nHni0QLNpz0qVzbrWycB8Y9LTxinVyggBTaGU/fg4DFk5RpqK7BMJm+zns79iNDFOKp5qp205yN4j\nCNs1QFstsG1oG89OqpYE7ota93g3EY/EaURKNKvdyT4W68+zbzTg7/6uc1uvGPq3nDv/b9q/1ST7\n8fQ4sYiycEDdiIasIVJJ0f5uncd96hRwwe3MFsocWzhGorqFuUll45jKfigx1E5l3b2hdQwiGRoN\ndXxjMW+C0zZOo5LwDNDqVgn6d0R9yD7p0hP9kH21ZNGgSlNUqVe8lX0Qzx7gyl1XMlOe4afP/NRz\n8pJqtdUnyGN7UsKDD9pWVzeyrxnKvlQrc/Jokssug/kp9X2b59/ga3PUNdnXS+SzTrKfmuqP7P2U\n/Ux5hoXqAoXpIU9lb5L9ppRt45QW1P53p8Dq/Zi1QhtnSdCL7K1oAua20ajYNo6c38SBoyeATmXf\nzbNPx9P85KdFDh9WpJZKOSfRllLyw+qnORb7Oa8753WOzyZjSYrVsmpuZsz+dFnireytf9Ax9rH0\nGJXcw+wctm8C4FFUFTBAK6XqC7N1aCunCzOUSp0pdl42jg6CNirdbZzx8U4b552XvJPrL7y+vV4m\nY5P9oUPO/ugaU1MwOopjX2hsG97GV17939r7wopaDCeGHetpZT95qgm/9xb+6fSXODZ/jFRzM4Wp\noQ5lP2QNtclc2zhzpzJtJStEd2Vfr9h59t2U/e6ZG/nd853lsYtW9qU4DWotsh/cswfVnO1Lr/8S\nv/ft3+Ohkw955tlblveTwuSkIli9XP9v3qiLRXWd1kq2CJmaX2DDUIYtW2B+KsvN536HDZGzfcmw\nZij70aFOZT862h/Z66klNXKJHEfnj6ouoPPRDmWfz6vzU5P95rSt7OfmBDTiHWSvbZxc0kn2oY0z\nIGZmuts4lQowfTaNkq2067ObeOaUInszGycZS3L0ZIm79tsWxx//sSp4AUjFMjQiBU6csC0cE399\n71/zm8o/8aqDv+Cs/FmO91RvnDLpdGsWntYj3ute9DyeP36RY+xjaVV+ee7I89rLIaCyb9k4tUat\nnVNfbVSJimhrZqxpymVnUVW5DE88QTsTR0P74o0eyn58vFPZP3/j89tqGZzKfmZG7T/3ST89rXxh\n/VtNwoiICK/eep1dnBKJ+5L94emT0Ixz18IXeHzqcVL1LdQWhpkpzjvJPjHUrlvIJXOI6XOI1Ufb\nfj30sHGqVjvPfiQ5QqOhyE8H60GRfWr24g5bYrFkXyoKosSpyiI1D2WvbZygxPLm89/M7dffTq1R\na6e5mr/Xz8bRLRTcZG8qez3ZfLVkK/vThVl2bskxOgrTU4K9yX/dnr/Bk+wrMSIxpexHh1PtOZ/B\naeP0CtDOzqpz1P1bhhPDVBoVcskcCwt0KPt8vtXquWYRr4+Qy6QMsgfqCRquQLm+xodT9uN/aOMs\nArOz3ZX9wgKI2V3UW2TfaEB9ZhPH5lvKvuTMs58rlThywla9991nF5JEGxmw/Mn+4NRBrtz4Fhqz\nnX1DkrEk5ZpS9uV6uX3X/9jH1A3FHLsm+z2bbC8f7Apav66X2n4SQqhJs1sXlm4Cl0vkma8rZW9a\nVfv3q7YPZiYOmMrev4JWK3uzqMq9HXCSvW6I5s5y6absoZXmZij7ocSQYz39RHO08Cyp4vlcKt7D\nbGUWq7oZKkNMF5Wyz2RaNo5l2zhSgvx/D5CobWyTG3iTfaWitlEr2zZOPplnclKdi5ZxzbtvWtA6\nB+vO9aBPsi+pwGC5Uegge20RBfXsNa6YuILjHz3ebnKn0Y3sdXZOL7Lftg0qRVugzFVmed5ZOUZG\n1HEvFtU+7UX2xVqRbCLF0JB9/mgbJ5frrewPHlRZRfomr5GIJUhEE+1eRm5lL4R6YluYs0hWlarX\n58bcHNCwaNa8bZx8KrRxlgRuG0f7ivquXyhA7tm3UD/wGkCdVKKwienqCZWy5cqzrzadFbRahQLI\nWhriRU6csGc7coylPMOG9IhnIFIFaEttG6dddRexS+t16mU6moNmhAs3d7FxvIqqjHRKsw+Jbu9s\nNUdoWtOUSmoOX32Tu/NOuPbazjG3q1TLvZW9JsR+yF4Xwmj88peqcAe8SdJU3PGot7Kv1CtMVg+R\nYwcvqd3Mn1z5J1RLFlSGmS3P+Sr7SgWQERYWnN+jbwYmdEWpaFqUWwHakdQIDz6o0nBNpNOd/rVW\n3q6W7H2TfUxYFOoLiEa8TSBS2jfFoJ69CXdXTHCSvXt7fmRvHrsjR9R+qRRsZV9szrLn7Jayn271\nUwqo7FOxFGNjtK2cfmwcTfZexzWXzLV7GbmVPSiyz1UuZOuR99tThraUfURaHSmwiWiCKBbDGWMS\nltDGGRxusnf7rAsLsHnh9XDoCmo19Tof34TMnGByEkdwLRVXZG8Gqaan7QtQ1DIQ91f20+VpxrMj\nHf3dQbdxLbUnJPFqSqVPntmZCKK0kfPHz2svB4+iKh8bB5zKX0/c0izmIalsnINTB9m9YTdSwve/\n70P2LWVf9/HsKxW1v4eH+1P2piLTOHFC2WW///vOfeH+Pk3CevIaLxtnunmIjYkJ6sUsN7/iZnU8\nqkOdAVrDs9eEvLBAh7L3CtAmEhAjwVx5jqZskoqluPNOuOYa57peZO8VnIX+yL5YVMq+UC0Qj1oO\nJRqLqVhSPzZON3Tz7A8caE2yU7G/X49P4/BhRfblgjona40aDapcuDvD6Kit7LuRfbUcQ0TtfvZu\nsg8aoD1wwCZ7r4ycVMRW9rrPjo7LbdkCtamtbHjqvSSTxvU6CzGR6IidpONpEjLfboIGoY2zKLhT\nL8FJFO3y/Va+9MICZMVG4vkTPPJYlXK93J4LNRVLUZNlyk2bNE2yb1a62zjTpWnGh/KeZJ+1spQb\nRZIp6VD2XuOemYGJH/6snQ7o6dl3CdCCnXPebMKpeWXj1OdHIDnDXGWWQrXAluwWHnvM7mrohlb2\nNR9lPzenLjBzf/ej7M3+9t/8Jrz5zWp7+re6lb0OPILymL/0+i+1M5jAJvuF6CF2DE20P18oAJVh\nCvVOZa8Vnkn2QTx7letvcaJwgnwyjxCC738f3vAG57pev8PLr4f+lX0iquZNtaLx9j4wt73UZO9n\n4+zZ01vZn3tuK6BdV43pIrVhNm8W7bGePt3DxinHFdl7KPt+snEOHlRPj17HNZfMkRS2snfPL7Bl\niwrA6ycz08aJRawOst+U3cS/nr7bQfahjbMIuJU9OMlHX9xaYS0swHB0E830CX59QPn1eoqzZCxJ\nVZaoNpSyl9Jp4zTLto3jRfYz5Rk2DXsr+1gkRlwksbILvspeE9f0NIzHdzmWg23jtIuqfFIvwc7D\n//GP4SMfVzZOeXqESGaa0yhVL4RoWzhuS0GPOUKUajna+SbqJB8asu0n8Cf7ZFIRT63WqeylhK9+\n1TmtXE9lH0+xObvZ8d1WVM09LIefYcewTfbFIlDNUmkWmV9oOpS93p/dlL0f2VtRi+myKso7eFB9\n9uKLnet2s3Hc6Jfs2zMkxWyyN2+IS0X2uoLWTfbNpopnXXhhb89+xw5IxhMUqxVmy7OIaq593Y6O\nKvXfTdlXSjFExF/Zj44q0dcrQGvaOF7KPiGVciyXbb9eY8sW1T5a31BNGycRSVAvd3b6jM7v7CD7\nM9LGEUKcJ4S43/g3K4T4kBDiciHEPa1l9wghLjM+c5MQ4qAQ4rdCiNd12z50ZuNAp7LPZJxkn4+P\nUYvO8NCTk20LBxSB1CnRECXiIkWppE4IfQHWS05lnxie5TsPf6f9+enyNFtGvMkelBcfy8wGUvYj\nI87l4Gpx7Beg1TZOq8L25Ek48LSycRZO5YlmZpiOHGynGnqpUY14NE5cJDrITmN+XqkpU137kb0Q\n6qZbKKibWTRqK/uf/1z9/7KX2ev38uzNfaO/WwhBPBInOvYEWzMT9jR3BUinIsRJM11Y6FD2JtkX\nCn0oe6FWyifz7f3ovmkul7IvFsGKWa25T73J3ovQZmbg9tuDfYeGn2d/9Kga89hYsABt2rIo15Sy\nl6Vc+7odGQlG9kRrvp59P8peB2i9lL0lh4lE1DHSlpjG5s22stcB2jbZxyxqHmSv+UfjjLVxGYAr\nMwAAIABJREFUpJSPSSkvkVJeArwIKAJ3AH8O/HFr+f/Teo0QYg9wPbAHuBr4SyE8IkYGvAqbein7\noWyUbHSUh48faAdnoWXjUIJ4iUYl1VagJtkLg+xP5+/i0/s/3f78THmGLSPeNg6oyaejmdmenr2Z\ngqiXaw+2a+qlUSilA7Tz8zBTKBAnw+yJEWRimrn4gTbZP/GEt4UDysaJRxIdClvDVPa9yB5sK2dm\nBiYmbGV/772qCtMkSj9l7/a63evFhEUj9wTbXDbOjh1gNYeZLs6RytSpNWoqTbV189TrupW9Vsdm\ngzJT2QOMpEZ8g9zL5dmXSopgCtVCB9l3s3Huuw8+/Wn6gp9n72WJ+Nk427ZBOmFRqlWYKc3SKNpk\nr5V9NxunUoqBj7LXWVy9yL5eV8p/bMxf2Ufrw2zYoPZjvd6p7I8dcyp7beMk4xbVUqKjkZ2b7J8r\nNs5VwONSykPAMUDr8TzQysTlOuA2KWVNSvk08DhwebeNmkpGw+xp76Xss1nYmN7EU/OPtjNSAKKR\nKBFikJijVky2lae+AKuFFDJa5viJpiLR1P2cLKhK3EazwUJ1gbEh5fl5pbwlGCaSmnUUVbnHrZW9\naU3pHi36b1/P3igG02mIc3NAvEC1kOb0sSyNSImF5KPteIBOefNCPBrH6kL2prLXF7ueKN0Lmuyn\np1W/fL1/jx2DrVud6/p59t2UPUAU1fp3y9Amh42zYwdEGkPMleeJptVctEIITxvHVPaRSCfJuck+\nnxjhpz+Fq67q/M1+ZL8knn3Maj0lWg7PvpuNMzenguH9wM+z97JE3Mq+0VDft2ULZJIJKrUqk/Nz\nRGu59g01qI0jhfLs0/E0Gzb0r+z1uelXLLdjeAeZxjY2bvRW9qZnbyr72VllUcWwOrbpRfZnpI3j\nwg3Aba2/Pwl8QQhxCPg8cFNr+VbgsPGZw0Dn/GYGvNSe2fnSS9lns7B9ZBOTPOpQ9gBRmYTkNNVi\niulpdUD1BVhYiBAjyVypxNQUTMZ+xVRpikazwUx5huHEMBERIZPBU90nZA6RmnXk2Zvopuw1OXgp\n+wdPPNjuw++2cebngXiR8lyGE8cjpCI5FnL3tAueupJ9JI4V9bdx+gnQgtPGOftsW9m7WwyY+8JE\nLxsHVIZMur6DbCbisGYmJiBSVf1xIkll4QCeAVpT2UMnMdhkrwaTieWJRjtjOGDftEzFt1Q2TjKu\nBpmIB/fs5+YUSfajLs12CSbZe2W2VKvqe/X+PHlSncuWBZmkSo09Pj2LJW3vdWSkdzZOudgi+5pt\n45w+reIG09PqhjE0pI5103sudMe56aXsP/Pqz7BX/mG7bqSXso/FlBg4dUodCytmdVz3Z5KNE+u9\nCgghLOCNwCdai74GfFBKeYcQ4veBW4HX+nzcs8P3LbfcAigVfM89+/id39nXfq+XZ5/NwrbcJuSG\nR8lEX+7YbrSZopaapryQZKakFKG+ABcWIMcEnPMYTzx5CUc33kc0EuV06TTzlfn2U4Ime5OwAeIy\nB4lZRwWtCf1Y6OXZa3KIxVp9W7Dz7N/zT+/hnRe/02Hj6ADt3BzkNxaYn8pQOgbDVp7j2SfZParS\nLotFb+IBRfaJaLKrsh/UxjnnHPhf/0st13OmmkilOoNtQcheSIuc2OF4MtA2jpxS/XFEMtvOwNIX\nvb4A3coeupG9IttMZMT/htkqyKnV7BvIYgO0uigrGVMbTFrx9m81t+1FaLpn/unTzkrfbvDz7I8f\nhxe+UCl3/T21moqh6fEcPqwsHIBsKsHhRpUTs7MkscleF9J1s3HaZF9vOGycuTn7c3ob8/OdcTxw\nnpteyh7U8R8fb/XycQVox8fVjaVet8+PZFJVTSfjFomoRbGonjI0VtvG2b9/P/v371+SbQVV9tcA\n90kpJ1uvL5dS3tH6+x+wrZojgDkt/XZsi8eBW265pUX4t3DVVfsc7/Xy7LNZ2JTZRHP0MYZjTkaO\nNFOQmKe8oJS9Sfbz83BB7Brie77Pb48cRQjVh/5k4aQjX99P2ccbOaTVCtD2oeyzWTslUYgWaTSs\n9pyzh2YPcefBOz0DtPPzsG1XgZmTaY4dgw3pEUQlrzprltW2ot7JNsSjcRLR7p6928YJQvZeyt6L\n7L0qaN1PcZkM/NVfwStfCT/+sZpAYiw+4SB7beM0SkMs1OfAmm+3oDZtnJGRYMq+nZ0SU0yQIu9L\n9tBp5SxW2evPW5rs4/G+bBzobeV84ANOH96ybAtCP6Xop2q3ss/l7N979KhN9kMpi2qzwqn5WdIR\np7IHW9l72RzFhU5lf+oU3H23PdsXdLdyeil7sCvCvVIvo1H1XiLhLIQ8eVLNNZyMpTssu9W2cfbt\n29fmSi2QB0VQsn8LtoUD8LgQ4lWtv68EWh02+B5wgxDCEkLsAnYDv/TbqJT2I6aJbspeB3Q3ZTeB\nVWA47rRxIk11FRbnlGc/MeFU9pdkr6W0406eqf6KczN7VY/4wqSjGZYf2cfqORqWv7I3Uy9Nsj//\nfPjnf3auV62KdurdycJJfvL0T5gpz3QEaOfmYNP2IsefzVCrwVh2hMi0SrvsZuFAS9nHuts4gyr7\nXmTvnksYvJX9Bz4Af/u38Pa3q+ZqzZrFltSEg2C1jVNfGKZYn6MZ97ZxNm70VvZuYmi3P7YEcWGR\nZMT3N0Nn/GGxAVr9NKafLFKWFdjG0dvvRfZ/8zf28TEbw5nb1PvJHaDN5+19PzWlAqIAQ+kEtWaV\n04VZMnF7Okmt7LvZOKVCjCb19tPr2Bg8/bSaWP4v/sJeLyjZ91L2XqmXoM5T89glEors/+PL/oLx\n6Wt7kv16tnF6kr0QIoMKzpoJX+8B/lwI8QDwH1uvkVI+AnwbeAT4Z+BGKf0natP+oDvdzUvZp1Kd\nyh4gE3Up+4Yiy8KMysbZtk1dnM2mulAuHn0FxfQjNHf+kAvyexlPjzNZnGw3wwJ/so/UcjRivZW9\nV1XwNiNyYVbRPjn9JFuHtrJnfA93H77bM0CbHSlATXUYHE3nkadtv74bScWjcZKx3gHafsh+clLd\npLduVTe1Wq1VV+DsveWp7L3IPpeDV7xC5ei/4AUwO2WxIzfRYeNs3w6V+SFKjXk1/6zLxjHJPrBn\nb6limkTT38aBpVf2p061fPA22Xt79tGoOm91JSgEU/b1ujOOYe4P88anj4eXstf73kyNHs5Y1JoV\npouzDFudyr6bjVMqxKhJVX2biCYYGVGprj/6kXOKweVU9qDI3jx2un7k7E3jZFOdnr3uxaRxRmfj\nSCkLUsoxKeW8sexeKeWLpZQXSylfKqW833jvs1LKc6WU50spf9Bt216P9dDbs89kWsoeyEadyl40\n1AYLs8l24CedVp9bWICRoQRnySth79e4aPwSW9mXeyv7SDVHPdrds/dS9m60C6uiCQ6ePshEboJr\nd19LrVnztHGa0QLbNqbZsgU2ZEZoTiq/Xvcj8UM8EicZ75162Y+Nc/iw+m26AdaJE+ricltJfsre\n63hrfOELQCPBrtEdHTZOPg/x5jDztTnqUVvZmzbO+Hh/nn08rlI9Y42lsXGyWbWeX4BR44EHVPGW\nFgyphHcFrbb8THU/P6/O6W5kr89dvf/cZO9W9m6yN5W9KVyGMwnqqDz7XLLTs++m7IsLMcqNAslY\nEiEE0SjccYe6wZvo1gwtqLIfGwuu7PXfQ0OtiYuM46znOzaP9XMlG2fJ4Xfx+3n27XYJhrJ3kz31\nFELGmJ2OtQOlWnHpgOTF6WshXuLSrUrZnyycDKTsqeSoRvpX9m6YGTkHpw6yY3gH1+5WSd5eAdpG\npMjEZqXsP/KSD2M99Adt5daNpGKRGMl476KqfpT9s8+qfZpMqhP/8cc7LRzw9+zdyt7E2WfDX735\nC7z/Dfs6bJxMBtLRIWR8nipOZe+2cYIoe01ycZEgXu+u7N02jl+ANhKxhUU33H+/6lKqlX066a3s\nodPKmZtTrQuCkL2XsjfTULuRvf69ZlfaoXScBlXmqzOMpvsj+9JCHIn0nFTIxFIo+5ERdaMslXor\ne21j6fRok+y13RYxWPKMtnGWE34Xf5BsHK3sU8IloWspYiSZmbEVtiZ7/dlXbH4DnN7NBVt2MZ5R\nNo456XQ+j2OOTHvAOaqid559L2VvVtEenFLK/uLNF3Ph+IVsSKlUAJ2HPz8PNVHgwt0ZLrgALhi/\ngHR9O6VSMBsnZfUO0Opx1+verXs1tLI3y+QfecSb7IN69m784RteTi6TaiuyWs3+nUPWMJHccb7/\nxD+ydUgl9pvKvl/P3rJgPL6TZG1r1/0YVNlDp5Vz441w223OdX71K7jkEoPsE96ePXiT/e7dnWT/\nkY/AD3+o/tY3m2KR9qxd+skrqI3jqeyHIkRknLnGKUYz/gFaLzIsLCjW9Zob2kS3nvZuZe9F9voa\nTybVcQii7HXyRDrtFHm65bWJM9rGWU4EsXG0beMm+/G0MonTolPZW0Jl4kxPq4PlJvvzt22Frxwg\nNxxRNk7RaeO86EWqXa8bzWKOCnM9bRyv5m4mHMq+ZeMIIXjoxofaNzEzQFuVBa57Q5r/8B+c3xPE\nxknHE2rSBg9rQT/ptKdnM4pWvGAqe1D/P/xwZ449BPfsuyGVUscwFlP/hpPDNC/6r2zObubjL/84\nsDjPPh6HW3b8jHhlc1/K3i9AC51k/5OfwIc/bKtVKTvJPpP0rqCFTrKfn/cm+4ceUgFPcNo4ZnDW\n3F/gHaDVqZcm2etzOZtVrYAXmpOMDzuVvRD205432SuqWUpl72fj6Bjf/Hwwz17/PreN86Mfwb59\nzs+HNs6ACGLjmF0vTbKPR+Oc9egXyYgxx2dlLUkiqpS9n42zaZP9yO1l41xxhZ1DbqJRzFGW3Yuq\nJiftWYb8YFbRamXfsU4sQaVeVUpVFh0ToGvy6ZmNE1XZOH6PvG5l3+tJYSmUfTfP3o10WgUz9W/c\nFXkFG37213zjum+0idK0cfJ5dVNbWAiYZ2/cKJbCswcn2TcaioCvvJL2jfrpp1sxp02msvdOvdS/\nzzx2fjbO1JQz6wzUmN03viCevTtAq493NguRZoJS5CSbc05l/4Uv2Nk+brKXUs3MFYvEeir7fjx7\nPxtHZ5h5KfuXvhTe+177dSLhVPbmcfZqoRHaOAMiiI3jp+wBJo5+mEbNGRmU1RSpeHdlv3WrKpwQ\nAmXjuAK0z3++SiecnHRsmnohR7Hp3whNn4DdLBxzvUQswcnCSW+yjyZYKFewLCjWCo4J0IOScyae\nYchyzgZlwp162XN7GUUUbmW/VJ691zZMsp8Y3smWo3/Y7nIKThsnk1HHd2oqeDZOrdb7Calfstdk\n+8wz6mnji1+Er38dHnvM9utBkX1UREmlRGAbx0/Znz5tVIobnr07tTmoZ69/r+nZZ7NqwpdmpMLm\nEZvsIxH19ALeyr5cbj2dRWKBlL17BjSNpVD2mzapdE8NPxunXFZPZa9/vfPz69nGCVRBu1wImo3j\npezBOw+5WU2RtpJMTdvE61b2lqUee4G2jZO1sm3PPhpVCuB//2/Vo12jvpCj2OjeCA26B2fBqewB\nX2U/OTPD8LCaljAdt9lIK/teJPW2F76NaqPKt33IXgdoazVbHfdS9mCT/eiouiEupWdvQpO9HtOG\nDZ1N80x1nk7bZB80G6da7cyl9hpHkAAtOJW97j2zeTPcdJMixL17lYUDiuytqOU434N49ueco/Z7\ns2kHD02y1zcb08Zx7y/oruzLZdotwk0bh0YCpGDzqOtAtOBFhnr/1gIo++3b1XXnBbey90qi6KXs\n3TDJ3rRx/uf/hIsuclbT6t8X2jgDIGg2jp+y95pmrVlJkU2oHPtiUR34oSFFGu3qVZTiAtiQ2sBM\neYbTpdOOpmpXXNF50lXnchTqc77KXtcM9FL27QBtLMGQNUQu0Wnwa2U/NNSaqcpyKvsgAdpkLMlw\nYtgzTU3KznYJQcle38z07wyq7Bdr44yOdpKyaeOk0+p9t7LvFqANYuPkcs6JWoLaOLr3DKjisSef\nVH3/TWUfj8YditK9bZPsGw31vhYwumiqVrPFDHQq+25kb1mdRVW6qtadWabI3iJSG2Z0xJs6upF9\nEGW/axc89ZT3e72UfbWq9lEi4a/s3fCzcfy6oOpAd6/02rWINW3j6MCiTosqFJxFDl7TrDWqSTKJ\nVPuOHYmoC+PYMe9GV9FIlHwyzzMzz7RtHPD27cvFOLFInOnStKey10GqoMp+9nSCjckJhy2hYUUt\nCuWqUvZVp42jibQXSWl42TjFotp/8biT7P1IDLyVPfiTfZCul93gtnG8lL1p42hlf/q0v7LXRGRO\n+9frCWnnTjv4CcEDtLqFMChy+tKXlP1iKvt4JE4+b1sXbmVvChp97kciyo7QVo4m/aDKvpdnb1l2\nCqmO64Dat7KegErO9xz3I/tslkCefVCy9/Ls9bzS+joMquz1k4t50/Wb6hPWr5Wz6mTfTdlrRSCE\nOhA6M0MfQC8bp1FOkYon24U/oE6Ao0c7iUJjPD1OQzYcZH/55fCb33R6tcNWjpOFk57KXo89qGf/\n5IEkscIO73ViCYqVCkPDssPG0cq+F0mZ67vJ3swY0gSwsDCYsvfKxlkOG+eNb7QDnRp+No6fZ+9V\nTdrLxnETUFBlr20cjWuugZ/9TPX5AVvZ5/P2k4OXjaNJTcdYwEn2Ok04iLLX2zNblXh1vUynVRsB\ns0lZNguyZjkmLnFjscp+wwb1efNJSsNsv+2l7M2n/qDK3u3ZF4vq3+HDysbx+43r0cpZdRvH6+I3\nPWl98PTJZxK228aRUpF9xkqRzxvFIC1l70v2mXFSsZSDwNNpuOAC+PWv7fWKRTUbTqFW8Myzh+Bk\nv7AAUycTZGpOv/6pp1SAOC4SFCoVMsNVoiLanjxc758gtov5fe4LwyR73R98ZqZ/z35kxP/prFJx\ntgbul+zdNk4+33kBum2cXsreq5q01xOSm+yDevamjaPx0pfaaZCJaAIrajEyYiv7bjaOjrFAp7IX\nwqnsdTWvn41Tq6mnm0jESfa6u2cqpa4Zk9Sz2dbk9eWc7+/vSfY9lL0QqrjOS933UvbmVKOa7Hsp\n+4kJ9X1ge/ZPPw1nneUspjKxXjNy1qyy19Wy+iLUF75J2G4bp14H0fBX9l42DqggrTm9ocbEhGqV\nqlEqQb5VJu5l4+ixB7Fxfv5zaFQTWGUn2f/RH6kMl+J8glK1QjpXcPj1+juCpF6a63dT9nqdqan+\nyH5kxNvCAXvSEHe3yX48e7eN4wUvG0d70eY6XmRvBmh72TjPPGP7tL2U/dyc2u6RI+pG4Qdt44yM\ndFf2muxNS8Wt7LdscSp73R/Gj+zNG6+fjXPsmPNczmRA1i3izWHfWozFkj34Wzm9PHtT2Wsbp5ey\n/8hH7LmTtY3z1FPdj1to4wwAP7LfvVtZKFNTTmXfbHaSvansKxVIHH0173jhOzrIvquyT487grMa\nerIDUAe30YB8qkX2i7BxLAv+5V8g8+T/yfip320v//GPVd+UF75QNQQr1Sokh5wWDtjKfqlsHFAX\n/vR079RLsAngssvg5pv913cHaQf17LuNycvGAf8KWjMVMaiNk06r33z0qHpSOXLEv5f85ZfDd7+r\nbtjbt/tXI0MwG8d8ejWVq5vsd+50KvvxcbVP3Dc+vT2/eXq7kX0spvLszYlL3PAiQi3a4pF4TxsH\ngpF9EGU/N9db2ZvQNs6TT/Ym+9DG6RN+j/U7d6rH9W99y6nsobuNU6lAqnQurz/39R02zsyMv7If\nT487/HoNk+z1iZbroewTiWDK/tAh+J0Lr0Sc2tNefvPN8PnPq6DezCk1BVxiqOgIzkLwbBzz+7rZ\nOHqbvZR9NKo8VZ2ONjoKb32r//pu336xNo4XLEt9h35qMDO1NBZr44BtLTz5pFLXY2Pe611xhboJ\n3nhjp4XTMfaWsh8aUmOo170raE3P3lT2x4+rv6emnGSvlX03z76Xsk+l1M3NfS5HhUVK9Ef2prJ3\nCxcvrKSyN6FtnF7KPrRxBoCfsgf1aPWNbzgDLtDdxjFPbLeyd3/WhJ+NY5K97tmu0yQXG6AFFe03\nC0gOHIBXv7o1mfekaoSWyHbaOEuRjTMI2esxasLpBbeyXy4bZ3ZWbTcS8Vb2i7VxwCagX/3KTp30\nw3/6T+oJTWfi+EHn2Uci6ljMzHRm+rhtHH0un3WWspZAKfuzzupU9ou1cY4e7Wz7ERcJ0tHByT6o\njfPkk53LzWyxpfLsTWhlH9o4y4BuF//v/q466fSFHoup1z1tnNYJvG+f6pMO9gngp+xfvP3FXHPu\nNR3LTbI/dEiRcC6RIxaJERHeu+7aa1WAtRsSCbWtiy6yyb5et6djm5iA0ycU2cdSnTbOUmfj6DH1\nsnHATrcMgsUqe33B9rJxzMByv8o+iI0DNtmbFbB+OOssNSHHG9/YfT1t4wDtIG03z94M0Jrq9/Rp\nleFTLiursVBQdSTdArSmnWX2zTeVvdvGAYhHLLLxRZD9Etk4y6Hs+/Hs16ONs+oVtH7kkUwqi8Bs\nKmV6stBp45gnsFn52kvZX7r1Ui7demnHck+yT+Z8LRyAP/5j37faSCTg5S/HkV+tKxWjUXXhTv4s\nQe3sCuXEoQ4bJ5WiXTS2kjZOv9ATzmj069nrsfRS9jMztq0SxLM3lX1QG2fXLlVVeeIEvP/9vcf+\nrnf1XicRS7T74+ggbTfP3lT2ExNKedfr9mxSmYwiPHeA1t0uwe3Z62JDfRPQqZfHjsGrXoUDViRJ\nzvL3KZdK2euAuJkRE8SzN50AXUsSFLq1uZ6JzQ+hjTMAutk4AJ/+NHzqU/ZrN9m7bRx3MEqjl7L3\ng5vsd+xQyt7PwgmKd7wDPvtZRba6nevp07YXPjEBJ45azMYO8ncz/46Pvuyjjs+vVjZOv9i9WzVK\nAzuvu1vA0g39yB7Es1+ssl9KGycoXr7j5Xzlmq8AtIO0XqmX+hw3lb1lKd/+2Wftc8fsAeXn2XvZ\nOGCTp0699LNxdh//FBfHr/f9TUuh7DMZ9Tt1TELDT9lLqd6bnravcXNqx6BIp+001m5WbGjjDIBe\nHu7YmDPIpcvhNbrZOCZ6KXs/6NnoazV1UU1MwHBi2DfHPig2bVIBteFhdXE2m+qC1U85ExNw8qmN\nJEu7+LPn38Xrznmd4/P9ZuPkcp1N3Qa1cfqBWYWsSccvd9kLmvR62TjmOr08e1MQ6BtFrdY7lrBr\nF9x3nyKCrVuD/4ZuSMQSvGCTmqopiI1jBmj1mJ580j53NNl3C9D6kb2p7LWNUyp12jgbY+ewOefv\n5XkR4eysGndQZW/+Ng1N6F6e/Te/qbb/5S/b9oterx8bJ5VS39PNwtHbXI82zqor+34f63vZOF7K\nMZlU9ki/ZK9noz9xIriN0+/2s1l1EU9N2cp+bAzKpzYz8f0HuGTLxR2f6zcbZ98+uOsu57KVUPYm\n2fd7rCGYstfbHETZx+NqP3Tr4a+xY4faxt69vdcdBPm82v9uEnZ79ubTqc4Q0ueOW9kHDdCay80A\nrR6XiWy2e7aZF9k/8YQaa1BlD52+fa1m127o8epjevQofPSj6np4+9vVskGUfSSizrleZL9ebZxV\n9+z7bYzVy8bxIhQh7IZo/WLzZmXlaLI/Yi3exjGhrRzTxhFCfdeBA95j7reC9lWvUnnfp07Z3rYX\n2ddqS0v2F12kys5PnYJ774Xzz+/v80E8e7ey1+sGraAN+jQTi6ljovvaLDVGRpSocD/9uD17t7J/\n6qlOG6dX6mW57E32OpgejfqT/bvepeoH/OBF9gcOqMykD23/EJdtvSzQ/tiyxdnG2X2um8rejGVo\nDKLsQX1HEGW/Hsl+Tds4bniRfRAbB9TJ0K+yB3XSHT2qbJwdO9R0iF5dKgeFDtKaNg4oYqnXvdMc\nk0l18ncr2zeRSKiUzh/8wF7mZePA0pJ9LAYveYnqB/O1rwULWppYjI3j1+nRTfYzM8HiHgDnnaeK\nppYDIyNKVLivB7/US1Ck9MgjynpIpezq3WJR3dR7KXv308/8vL1M73u3Z79vn5o8xQ9uIlxYUPt4\n+3a47vzrGM+MB9of7hm/3GRvKnszlqExiLKH4GQf2jh9YqVsHBhc2W/ZAg8+qAghk4Hnb3w+d73t\nrt4fDAhN9qaNA3azLD9lPzVl55YHwbXXqratGtpH1dAXx1KSPSgr5447lI10ww39fTZogBaCe/Zu\nG6cfsv/Od+BNbwq2br/I5/3J3itAC4qU7r3XnohnaEip4WRS7Y9yWf0LauMsLNjk6Kfse8FN9o8/\nriycfmI10JvsV1PZr1cbZ9XJvh9lf+21cLFhYQe1cUARTa8iFy9s2QJ3362UtsZQYoC7hg/y+U4b\nB+zv83oaSSbV+v0Q8zXXKGXfaKjXc3OdNg4sD9l/4xsqFbbbvLxeCGLjRKNO28Gc2EbDTfZmMZH2\n7IMgm+2ftIJiZERln7if1Lop+7PPVjaZPm+GhtQ29DgTCfWZoGRfKHTePBdL9trC6RerpexvuAEu\n7czCduCMtHGEEOcJIe43/s0KIT7Yeu8DQohHhRAPCSH+zPjMTUKIg0KI3wohXue/9f5tnPe+19n1\nsB8b59//e/+mXd2wZYuafHxiove6g0BXTnrZONmsPVmCiVRKrR9UkYJ6jN6xQ924pFwZGwfgxS9W\nF4duNtUPgtg44Awo6gnUTVLu5tlDf/txuRDExnGT2ubN6rfp80b3gDJbjMzMdHr27jx7sJV9Lxun\nF9wWh7vNc1AEIXvdqnkplf0tt/j3PdJYrzZO110hpXwMuARACBEBjgB3CCFeDbwJeIGUsiaEGG+t\nswe4HtgDbAN+JIR4npTSc16XQTI0TPRj4wyKLVtUa+XlIns/G2diwt92SqVUYHE8mP3ZxqWXqukY\nL7nEVn4ay6XsMxllg513Xv+fDWLjgD0zEagb5N13d77vV1QVZPsrAW3juKuvLcuegNsUcekVAAAT\ncElEQVQdoI1EVAqvqewfe8zZPNBN9r1sHFPZJ5P9X59u1XvwoF3J3g96kb1uz1yvd+4XsM+HfpV9\nEDwXbJyrgMellM8C7wM+J6WsAUgpdRb3dcBtUsqalPJp4HHAN6TVr43jRj82zqDQTwM7vOcYWTTM\nAK1J9hdc4B8MTCZVbn6/xKyzN9yqXm8Tlp7sQWXhDJKuqMfSj7IH1TXU/X43Zb8cv7lfjIwoAvHz\n7Ot19RvcY921y0n2prLXldZBi6rcAdp+LRzwtnGWQ9nrMVernSmpYO/HfpV9EJyRNo4LNwC3tf7e\nDbxSCPELIcR+IYR2ubYCh43PHEYpfE/0a+O44bZx3KXhSwFN9stp42jP3rRxtm1TrXK9EFTxutGN\n7PV+C5Lds1JIpRT59Lpg3WTvRrcALawdZQ/+nr0mNPdN00322rMHtU9mZ73z6YMo+6Ug++WycfSY\nK5WVV/ZnpI2jIYSwgDcCnzA+NyKlfIkQ4jLg24BfNwnptfCWW27h5EnVMOpNb9rHvn37+hs53i2O\nl9rG0VPuLaeN8+ijncq+GwZV4boq0U/Z6zlp1wpGRuDWW3uvp+co7vb+evDswd+zn5ryJt93v9uO\n62iy17UA6bSqnB7Es7/oIviTP+n/d5hkryuCvaat7IV+lb1fgHY5lP1K2jj79+9n//79S7KtoLvi\nGuA+w645DNwOIKW8RwjRFEKMoTx90/DY3lrWgVtuuYWvfEX1vglKcm6shI2TSCgLp1c61qDI51W6\nXK0WvA4gaODSjV42zlpS9aA82W798jX6Ufbu1r6wNmyceFzddNxkrwXN5KTqZOmGWeQ1NOQ8j1Ip\ndaz9bBx3GrM79fJf/av+f4dJ9lrVD2LhBVX2um2I+9pZbmW/UmS/b59TCH/mM58ZeFtBbZy3YFs4\nAN8FrgQQQjwPsKSUp4DvATcIISwhxC6U3fNLv40uh42z1MoeVNBrEHUSBLmcUtujo8EvCk1W/SrS\nTZvURXPkiLeNsxZIbxD0Gnu3rpewNpQ9qBu/l41TrSqy7xWQ1751t2ycoDbOoDCJcNC0Swiu7HWL\nD3dK7HJ79mekjSOEyKCCs+82Ft8K3CqEeBCoAm8HkFI+IoT4NvAIUAdulFJ62jiw9Nk4brWyVFhO\nxZvPK7XdraWqGzqTpl9yFkJlb/z6197Kfr2SfS9lH4+r+oJmc+3aOKCsHD8b5+RJb2Vvwt3wL5Wy\nu1hqdAvQup8CBoFJ9ocPD57YkMmoMdbrapt+yn5y0jtrLRZT/8JsHBs9yV5KWQDGXMtqwNt81v8s\n8Nle29U7azF33pWwcZYb+by66fVrZQ1Kzrt2qQk43D1e1jPZJ5PdCVv3a69UOrtewvog+0GVPQzm\n2Q+KSETdVJtNb3slKISw+/Pn86r1g9fT6KlT/jOnJZNhNo6JVaugXayFAytn4ywndNCtnxmgQKm2\nQUhq1y41Zd6ZZON89au9c7m1b29mPWkiWCu/O5/v7tkHJXszG0dvw9yee6YqvXwpyF4I+0kq6HwL\nfjCtHD9lf+pU93qUMBvHxqqR/WItHPC2cdabsteku5LK3itAe9ZZvcvE1yp27+59UWuy13MJg01M\na0nZ+6Ve9mPjmHn2sLKePdjKN8h0j93Qi+xXS9mvVxtnVcl+KZT9erdx9EQR/ZJ9KjUY2evYgJvs\nL7gA/st/6X976wWa5Eyyh7VF9l7Kvp8AbSKhyC2Isu9VVLUYmGS/mKemtazs1yPZr1o/+9DGsZHP\n92/jLEbZg78aOlOhlf3x406y7xXcXUm8612dYkWf43Nzvcled74M6tm7bwJm6uVisFzK3v3U00vZ\nf/7zg7Xp6IXXvMa7Z9Vax6qRfWjj2MjlBlP2g3r2+jufS0gklF8vpVMJWtbaUfYveEHnMn2OB7Fx\nwDlvgzmFn7m9IF0vFwNN9ivl2V94offnl6sd9ZVXLs92lxurZuPMzy+9jbMc7RJWAvn8ynn2w8Pq\nKeK5SPZPP61UvVnPsJZsHC/0Y+NAb2W/0p79cto4WtkPMk/FcxGrRvZHjy69jbMc7RJWAu94B7zo\nRf195oYbnL39+8HHPjZ4sct6hUn2Jt73vuVrcrcUiMdV4VAsFow43/UuFX+B/gO0zeb6CtBqZf9c\nsyQHxarZOIcPhzaOxnvf2/9n3v3u3uv44ZOfHPyz6xWWBc8800n2n/rU6ownKOJxFVTe5ttO0IkP\nf9j+28+z9wvQutcdFKaNs1TK3uspIVT2/WHVlP3hw0un7HWN7noN0IZYfvgp+7UOLWj6nbsA/G0c\nv6Iq97qDYjmU/fHjnS1LLMt/nuYQnVg1sj9yZPFkH4ko/1VPtbdelX2I5cd6JXudHRMkOOuGl42j\ns0iKRW+yX4vZOLOz6hp3d/3U4w+VfTCsqrJfCmI2rZyQ7EP4Yb2T/VIpe/16fn75lf1S2TjPPqta\njLsbBeqxhso+GNa1jQPOIG1o44TwQyKh+qssV/fS5cJiyV6IzpzweFyp7uX07HUfosU0EdRkf+iQ\ndxA9VPb9YVVtnKVQ4Wb6ZajsQ/hBk9h6U/Z63IPaOJblr4iXU9nPzdk3m0Fhkr3X5EGhsu8P67pd\nAoQ2Tohg0OfFeiP7xSp7L/L2IvblIvvFwG3juBGSfX9YNbKH0MYJsXLQfWMGnRVttbAYsh8b806z\ntSy1XXPCj6Um+9nZxRer9VL2oY3TH1aV7EMbJ8RKIZFQfr17RqO1jmhUWSGD2DjxONx8s/dy93Wy\nHsleW1RruQJ6LWHdK3tt4zSbKgNgLU2YHWLtwLLWn4WjYVmDKftu23OTvX69VKmXS2njdFP22ez6\nu4GvFlatghaW1sbRFs5iAkIhzlwkEuuX7K+7bmmziLzIfq0q+7k51bPHq4LYskK/vh+sGtl7PUoO\nuh2v8u8QIUysZ7L/+79f2u1Zlnfuvfn/YrBUZK+v5w0bvK/tRCL06/vBqpH92NjS2jhhcDZEN9xw\ngyryCbFynv1ibRzdn9+vUV2o7PvDuid7vwmUQ4QwcdZZqz2CtYOVsnGW4klqaMjbrwcVtPZ7L0Qn\nVi20MTYW2jghQqwGugVo15KNA93J/sUvhu98Z/Hf8VzBqpH9e96zNBNchzZOiBD9YSVsnKXIxoHu\nZB+iP3QleyHEeUKI+41/s0KIDxrv/5EQoimEGDWW3SSEOCiE+K0Q4nV+277hBti5c/E/ILRxQoTo\nD17KPtYydJcq9XKplP3oqD2VZojFoatnL6V8DLgEQAgRAY4Ad7Re7wBeCzyj1xdC7AGuB/YA24Af\nCSGeJ6VsLsvoCW2cECH6hRfZC+GdpTMIlipAC/D1ryvCD7F49GPjXAU8IaV8tvX6i8DHXetcB9wm\npaxJKZ8GHgcuX/Qou0DbOKXS0gR8Q4Q40+FF9qCWLRXZLywsjbLfuNF+6gixOPRD9jcA3wIQQlwH\nHJZS/sa1zlbgsPH6MErhLxu0jTM9HSqAECGCwK/GZSmVPYRtDNYaAt0zhRAW8EbgE0KINHAzysJp\nr9Ll49Jr4S233NL+e9++fezbty/IUDqgbZzpaRgZGWgTIUI8p6Cn83Pj9tuXplJXk/1S2DjPdezf\nv5/9+/cvybaCPiBdA9wnpZwUQlwE7AR+LVRvgu3AfUKIF6M8fbMEYntrWQdMsl8MtI1TKITKPkSI\nILAseypPE6985dJsXwd5Q2W/eLiF8Gc+85mBtxXUxnkLcBuAlPJBKeUmKeUuKeUulFWzV0p5Avge\ncIMQwhJC7AJ2A78ceHQBoG2cqalQ2YcIEQR+nv1SIbRx1iZ6KnshRAYVnH23zyptm0ZK+YgQ4tvA\nI0AduFFK6WnjLBVMG2f79uX8phAhzgzE47CcV2Vo46xN9CR7KWUBGOvy/tmu158FPrv4oQWDtnFC\nZR8iRDBks/aEP8uBUNmvTaz7pKYwGydEiP7woQ8t7/ZDsl+bOCPIvlIJlX2IEEGx3PZKaOOsTaz7\nOV60jRMq+xAh1gZCZb82se7J3szGCck+RIjVhyb7VGp1xxHCiTOC7Mtl1WUvl1vt0YQIESIWUxZO\nOEXo2sK6J3vLgslJNWNNNLraowkRIkQsFlo4axHrnuzjcThxIgzOhgixVhCS/drEGUP2oV8fIsTa\ngLZxQqwtrHuytyw4eTJU9iFCrBWEyn5tYt2TfTwOMzOhsg8RYq0gVPZrE2cE2UOo7EOEWCuIx1VL\nhhBrC+u+glZPthAq+xAh1gZe+1o4//zVHkUIN84YZR+SfYgQawOZTEj2axFnDNmHNk6IECFC+GPd\nk31o44QIESJEb6x7sg+VfYgQIUL0xhlD9qGyDxEiRAh/rHuy1zZOqOxDhAgRwh/rnuxDZR8iRIgQ\nvXFGkH08HlbshQgRIkQ3rHuyz+fhNa8Je2eHCBEiRDcIKeXKf6kQcjW+N0SIECHWM4QQSCkHkrZd\nlb0Q4jwhxP3Gv1khxIeEEJ8XQjwqhPi1EOJ2IUTO+MxNQoiDQojfCiFeN8igQoQIESLE0qIr2Usp\nH5NSXiKlvAR4EVAEbgd+CFwopXwhcAC4CUAIsQe4HtgDXA38pRBiXVhF+/fvX+0hdGAtjgnW5rjC\nMQVDOKbgWKvjGhT9EPFVwBNSymellHdJKZut5XcD21t/XwfcJqWsSSmfBh4HLl+y0S4j1uKBXYtj\ngrU5rnBMwRCOKTjW6rgGRT9kfwPwLY/l7wS+3/p7K3DYeO8wsG2woYUIESJEiKVCILIXQljAG4Hv\nuJZ/CqhKKb1uAhphJDZEiBAhVhmBsnGEENcB75NSXm0s+zfAu4HXSCnLrWWfBJBS/mnr9f8APi2l\nvNu1vfAGECJEiBADYNBsnKCTl7wFuE2/EEJcDXwMeJUm+ha+B3xLCPFFlH2zG/jlUg02RIgQIUIM\nhp7KXgiRAZ4Bdkkp51vLDgIWMNVa7edSyhtb792M8vHrwIeklD9YprGHCBEiRIiAWJWiqhAhQoQI\nsbJY0Rx4IcTVrWKrg0KIT6zkd7vGsUMI8RMhxMNCiIeEEB9sLR8VQtwlhDgghPihECK/CmOLtgrY\n/nEtjEkIkRdC/EOriO4RIcSL18CYbmoduweFEN8SQiRWekxCiFuFECeEEA8ay3zHsFLFhj7jWtUi\nSK8xGe/9kRCiKYQYNZat2piEEB9o7auHhBB/ttpjEkJcLoT4ZYsT7hFCXDbwmKSUK/IPiKLy7ncC\nceAB4IKV+n7XWDYDF7f+zgKPARcAfw58vLX8E8CfrsLYPgL8LfC91utVHRPwX4F3tv6OAbnVHFPr\n/HkSSLRe/z3wjpUeE/AK4BLgQWOZ5xhQRYYPtM77na3rILKC43qt/j7gT1d6XF5jai3fAfwP4Clg\ndLXHBLwauAuIt16Pr4Ex7Qde3/r7GuAng45pJZX95cDjUsqnpZQ14O9QRVgrDinlcSnlA62/F4BH\nUQHlN6HIjdb/b17JcQkhtgNvAL4K6CD2qo2ppQBfIaW8FUBKWZdSzq7mmIA5oAakhRAxIA0cXekx\nSSl/Cky7FvuNYcWKDb3GJVe5CNJnXwF8Efi4a9lqjul9wOda/ISUcnINjOkYSmAB5IEjg45pJcl+\nG/Cs8XpNFFwJIXai7qZ3A5uklCdab50ANq3wcL6EynJqGstWc0y7gEkhxNeFEL8SQvxNK2C/amOS\nUk4BXwAOoUh+Rkp512qOyYDfGNZSseGaKIJspXMfllL+xvXWau6r3cArhRC/EELsF0JcugbG9Eng\nC0KIQ8DnabWmGWRMK0n2ay4SLITIAv8dlTU0b74n1bPSio1ZCPE7wEkp5f3Yqt6BlR4TyrbZC/yl\nlHIvUECdfKs2JiHEOcC/Qz26bgWyQoj/azXH5IUAY1jx8a2VIkghRBq4Gfi0ubjLR1ZqX8WAESnl\nS1Ci69td1l2pMX0N+KCUcgL4MHBrl3W7jmklyf4IyqPT2IHzzrSiEELEUUT/TSnld1uLTwghNrfe\n3wKcXMEhvQx4kxDiKVRNw5VCiG+u8pgOo9TXPa3X/4Ai/+OrOKZLgZ9JKU9LKeuoxnwvXeUxafgd\nK/e5vx37cXxFIFQR5BuAtxqLV2tc56Bu1r9une/bgfuEEJtWcUygzvfbAVrnfFMIMbbKY7pcSnlH\n6+9/wLZq+h7TSpL9vcBuIcROodovXI8qwlpxCCEE6o75iJTyPxtvfQ8V7KP1/3fdn10uSClvllLu\nkFLuQvUh+hcp5dtWeUzHgWeFEM9rLboKeBj4x9UaE/Bb4CVCiFTrOF4FPLLKY9LwO1bfA24QQlhC\niF34FBsuF4RdBHmd7CyCXPFxSSkflFJuklLuap3vh4G9LQtsNffVd4ErAVrnvCWlPLXKY3pcCPGq\n1t9XoroMM9CYljqi3CPafA0q8+Vx4KaV/G7XOK5A+eIPAPe3/l0NjAI/au3QHwL5VRrfq7CzcVZ1\nTMALgXuAX6NUT24NjOnjqJvOg6hAaHylx4R6+joKVFGxqH/bbQwo2+Jx1M3q9Ss4rncCB1GFkfpc\n/8uVHJcxporeV673n6SVjbOaY2qdR99snVf3AftWaUzmOXUpKp74APBz4JJBxxQWVYUIESLEcwDr\nYmKRECFChAixOIRkHyJEiBDPAYRkHyJEiBDPAYRkHyJEiBDPAYRkHyJEiBDPAYRkHyJEiBDPAYRk\nHyJEiBDPAYRkHyJEiBDPAfz/EYnp0MXSiiEAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -182,7 +182,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 12, "metadata": { "collapsed": false }, @@ -201,7 +201,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 13, "metadata": { "collapsed": false }, @@ -229,11 +229,10 @@ " 340. , 342.5, 345. , 347.5, 350. , 352.5, 355. , 357.5,\n", " 360. , 362.5, 365. , 367.5, 370. , 372.5, 375. , 377.5,\n", " 380. , 382.5, 385. , 387.5, 390. , 392.5, 395. , 397.5,\n", - " 400. , 402.5, 405. , 407.5, 410. , 412.5, 415. , 417.5,\n", - " 420. , 422.5, 425. , 427.5])" + " 400. , 402.5, 405. , 407.5, 410. ])" ] }, - "execution_count": 9, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -255,7 +254,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 14, "metadata": { "collapsed": false }, @@ -286,11 +285,10 @@ " 351.25, 353.75, 356.25, 358.75, 361.25, 363.75, 366.25,\n", " 368.75, 371.25, 373.75, 376.25, 378.75, 381.25, 383.75,\n", " 386.25, 388.75, 391.25, 393.75, 396.25, 398.75, 401.25,\n", - " 403.75, 406.25, 408.75, 411.25, 413.75, 416.25, 418.75,\n", - " 421.25, 423.75, 426.25, 428.75])" + " 403.75, 406.25, 408.75, 411.25])" ] }, - "execution_count": 10, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -316,7 +314,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 15, "metadata": { "collapsed": false }, @@ -324,18 +322,18 @@ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 11, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEACAYAAABVtcpZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8VHW9//HXhw1s7hdBRUBAJIJUREMqtRiPeclMzczI\nW1mdzMv56cnKy88jG6X8WYiX0uwoR6Q0tZNlGoKpjIooosRViftdNvfNHTZ7f35/rNl7D7ivs2dm\nrZl5Px+P/WDWd61Z67OH2fOZ9b2auyMiIoWpRdgBiIhIeJQEREQKmJKAiEgBUxIQESlgSgIiIgVM\nSUBEpIA1mATMbLyZlZrZ3KSyUWa2xsxmJX7OTZQXm9nTZjbXzBaY2a1Jzzk5Ub7IzB7IzK8jIiJN\n0Zg7gSeAc2opH+fuJyd+JifKRgK4+xBgGHCNmfVJ7Pst8H13HwgMNLPazikiIlnUYBJw92nA1lp2\nWS1l64H2ZlYEtAP2AdvNrAfQ0d1nJo6bCFyUWsgiIpIuzWkTuMHMZpvZ42bWBcDdpwDbgY+BFcBY\nd98G9ALWJD13TaJMRERClGoSeATo7+5DCb793wdgZlcAbYEeQH/gJ2bWr/lhiohIJrRM5UnuvjFp\n8zHgxcTjU4G/uHslsNHM3iZoG5gGHJ30nN7A2rrOb2aa0EhEJAXuXltVfZ0aeydgJLUBJOr4q1wM\nzE88XgicmTimPfB54CN3Xw+UmdlwMzPgKuCF+i7o7vpxZ9SoUaHHEJUfvRZ6LfRa1P+TigbvBMzs\naSAGdDOzVcAo4AwzGwpUEtT9X5M4/HfAeDObR5A0xrv7gsS+64EJQBtgktf0KBIRkZA0mATc/bJa\nip+o49h9wBV17PsAOKFJ0YmISEZpxHDExWKxsEOIDL0WNfRa1NBr0TyWaj1SJpmZRzEuEZEoMzM8\nQw3DIiKSh5QEREQKmJKAiEgBUxIQESlgSgIiIgVMSUBEpIApCYiIFDAlARGRAqYkICJSwJQEREQK\nmJKAiEgBUxIQESlgSgIiIgVMSUBEQhNfEQ87hIKnJCAioVESCJ+SgIiE4o0Vb7Bm+5qwwyh4DS4v\nKSKSLnvK9zBj7QziK+Ks37me8f8cT+9OvQGI9YsR6xcLN8AQxVfEQ/n9lQREJCt27t/J0EeHsuC6\nBdUfdj069KAkVgLA5t2bwwsuAsJKAqoOEpGMWbBhAaU7SwHo0LoDc6+dS3HL4k8ct3DTQi5+7mIK\ncVlZd2d12erQrq87ARHJmOc/ep5Tjz6VIzscCUC7Vu0O2l/1zXdQ90G8euWrmDVpedycF18R5/Xl\nrzN5yWRmrptZXZ7NqjEtNC8iabN482ImL5nMf3zuP1I+R3lFOZf86RLGXzCe7u26pzG66CivKGdV\n2SqOPezY6rKSeEl11ViqMrLQvJmNN7NSM5ubVDbKzNaY2azEz7lJ+4aY2XQzm29mc8ysdaL8ZDOb\na2aLzOyBpgQpItGV/IWta9uudGnTpVnna1XUittOv41ubbs1N7TIenPlm4ydPjbsMIBG3AmY2enA\nTmCiuw9JlI0Cdrj7uEOOLQJmAZe7+3wz6wpsc3c3sxnADe4+08wmAQ+6+5Q6rqk7AZEc4O6cOfFM\nnrjwCfp26ZuRa0xaPInjjziePp37ZOT82bJlzxY6F3emqEURELx2ydVf6WgYzsidgLtPA7bWdr1a\nys4G5rj7/MRztyYSQA+go7tXVXpNBC5qSqAiEg37Duxj466NQPCh89jXHsvoB/TSLUvZvm97xs6f\nLde8dA3TVk2r3j60/SOs7rHNaRi+wcyuBN4Hbnb3MmAggJlNBroDz7r7r4BeQPKokDWJMhHJMb99\n/7eUV5Tz09N+CnBQvXYmJLcv7Nq/i0qvpGNxx4xeM132HthLm5ZtAPjjN/5IyxbR64uTakSPAHcl\nvuWPAcYB30+c7zRgGLAXeM3M3geanMZLSkqqH8diMWKxWIqhikhz7Ny/kxf/9SLfPuHbANz4uRtD\n68Xz/EfPM2/DPH551i9DuX5TrNuxjvOeOo9Z18yihbXISAKIx+PE4/FmnaNRvYPMrC/wYlWbQF37\nzOxbwLnufnVi3x3AHuApYKq7D06UjwRGuPu1dVxPbQIiEbGnfA+3vnor484ZV12fHaaKyopIxFGX\n5Lr+7fu206m4U9aunZE2gapzk9QGkKjjr3IxMD/xeApwgpm1MbOWwAhggbuvB8rMbLgFr85VwAtN\nCVREsmd0fDTvrX0PgLat2vLgVx6MzAdvVRzLti7jG899I1IDzO5/537uf/f+6u1sJoBUNaZ30NNA\nDOgGlAKjgDOAoUAlsAK4xt1LE8dfBtye2Pd3d78tUf5ZYALQBpjk7jfWc03dCYhk2f6K/bQuag3A\nO6vfYcBhAzi8/eEhR1W3isoK5m2Yx9AeQ8MOpdrGXRtp37r9JwbFZUsqdwIaLCZSgA7tjvjqslf5\n7w/+m+e++Vx4QTXT47MeZ+TxI+nQukPWrnmg8gAXPnMhEy6cEImEmUoSiF5TtYhk3NTlU2nbsi3D\new3HzBjRdwSnHn1q2GGl7EDlAVZsW4HV2nM9c1q2aMno2Gi6tcvdgW2aQE6kADnOmLfGsGn3JiAY\npRtWFUY6tGzRkjH/Nob2rdsD8PGOj6morMjItd5b+x6/eOsX1dvDeg6jheXuR6mqg0QKxN/+9Tcm\nL5nMEe2PYPQboxk1YhSQn/P4X/vStZz3qfP42qe/lvZzb9q9iQ83fsiX+n4p7eduLlUHiUi9+nbu\nyy2n3wLQ7MnKouzhrz6c1qqhh2Y8xPkDz6d/1/50b9c9kgkgVbl7DyMiDVq2dRmVXgnABZ++oDoB\n5LsW1qK6r/5zC55jdHx0s87Xs2NPiiwaXWTTTUlAJI/955T/5MONH36iPN+qf+rz1U99latOvKpJ\nz9m2dxtP/POJ6u1LPnNJxibIC5uSgEie2bJnS/Xjv37rrxx/xPGfOKaQkkD71u05pusxQDD30G/e\n+02DA8yKrIilW5dW30XlMyUBkTzy4cYP+fqzX6/eLrSVuhqyq3wXew/s/cQUzhAscblw00IAOhZ3\nZMy/jcnpXj+Npd5BIjmuorICx6snKCuvKKdVUauQo8oNK7atYMLsCZTESnhy9pN0aN2Bb3zmG2GH\nlbJMzh0kIhF1y6u38Ie5f6jeVgJonIrKCi5//nJ27NsBwHeGfienE0CqdCcgkoOSZ6os21tGx+KO\nBVF1kS7xFXHiK+K4O3e9eVfejJnQ3EEiBWB3+W5GTBhB/Dvx6hGykrp0LPAeFaoOEikA7Vq147lL\nnlMCkLRQEhDJAX9f9HfufuPu6u2qLo/SfLlc/ZMOqg4SyQEbdm1gx74dGV/PV3KbqoNE8shPXvkJ\nq8pWAXBE+yOUACQjlAQyqGoQikgqvtz/y3Qu7hx2GJLnlAQySElAmmJ12WoemvFQ9fa5A86lcxsl\nAcksJYEM2V+xvyDmHZH06VTcqXqNX5Fs0XoCaVY1COWlRS/xwccfVA/gyfVBKJIZry17jV6dejGo\n+yA6t+nMj4b9KOyQpMCod1CarC5bzXMLnuPmU28GYN+Bfdwz7Z68GYQi6ZO8yPtTc5+iX5d+nNbn\ntHCDkryg3kFZtu/AvurHndt0Pqj+trhlcRghScRVVFbw2AePVW9fPuRyJQAJlZJAityd4Y8PZ+W2\nlUBQn/uDk39w0DGxfjEmzJ5QvZi3SHllOfM2zGPX/l1hhyICNKJNwMzGA+cDpe4+JFE2Cvh3YEPi\nsNvdfXLSc/oAC4BR7j4uUXYyMAFoA0xy95vS+HtkxYw1M2jTsg0n9jgRM+Pt771Nh9Yd6jw+1i/G\nIzMfoWxvGd3bdc9ipBIlK7et5PXlr7OyLPjCMG/DPH41/VeA2ookfI1pGH4C+DUw8ZDycVUf8LW4\nD5h0SNlvge+7+0wzm2Rm57j7lKaFG65VZavoVNyJEzkRoN4EUOW6U67LdFgScTPWzsDxg9qH1FYk\nUdFgdZC7TwO21rKr1sYHM7sQWEZwJ1BV1gPo6O4zE0UTgYuaHG2WzS2dyzeeq5lf/JvHfZNzBpyT\n0rlyraFbUlfplby06KXq//NLj7uU7530vZCjEqldc9oEbjCz2Wb2uJl1ATCz9sDPgNEcnCR6AWuS\nttckyiLF3Zm+enr1H+/g7oP51Vm/avZ59x3Yx9DfDWX7vu3NPpdEn7vz/EfPs3Vvbd+dNGGZREuq\n4wQeAe5ydzezMcBY4AdACXC/u+9u7tqmJSUl1Y9jsRixWKxZ52us+965j4fPe5geHXrQqqgV/bv2\nb/Y5i1sW8/fL/k6n4k5piFCiaFXZKkp3lnJKr1MoalHE/1z4P3UeqyQg6RKPx4nH4806R6PGCZhZ\nX+DFqobhuvaZ2ZtA78SurkAFcCfwPDDV3QcnnjMSGOHu19ZxvayNE3h81uMc2f5Ivvbpr2XlepKf\npiyZwvJtyzXYS0KVyjiBxt4JGEnVO2bWw93XJzYvBuYDuPuXko4ZBexw90cS22VmNhyYCVwF1EyS\nkkXuTumuUnp06AHAsJ7D6NKmS1auvWv/Lj74+AO+1PdLDR8skebu/PmjP3PRoIto2aJlym1FImFr\nsE3AzJ4GpgMDzWyVmV0N/NLM5prZbGAE8J+NuNb1wHhgEbA4uUtpNr2z5h2u/XvNDcjQHkPp16Vf\nVq69ec9mJs45tJOV5Kq3Vr7Fxl0bww5DpFnyctqI5GH5FZUV3P3m3dz+xdtpXdS6utG3uW0WUnhW\nl61m2dZljOg3IuxQRGqlaSMSpi6fyoHKAwAUtSiie7vu7CnfAwQvkhKApGLdjnXMKZ0TdhgiaZWX\ndwJfePwLXDPsGr479LvpCyqNJi+ZzD8//ie3ffG2sEORerg7zy54losGXUSblm3CDkekQZlsGI68\nqimcAd5d+y5nH3s2JfGSSA7LH3LkkKy1Q0jqzIwFGxbwhd5foG+XvmGHI5IReXknUBIv0bB8Scma\n7WuYVzqPr3zqK2GHItJkahPIMVv3bGXb3m1hhyFJduzbwYKNCxo+UCRP5GUSiFr1T13GvDmGV5e9\nGnYYBe+P8/5YnYwHHz6Yn5z6k5AjEsmevKwOyhXurp5KETB2+lguGnQRAw4bEHYoIs2SSnWQkoAU\njKrxI+t2rGP66ulc8plLwg5JJK3UJpCjSuIlWn0sC6p6j1VUVrB0y9JwgxGJCCWBCBjUfZDWG0iz\n0p2l1QMEAX485cds2bMFgKM7H80tp98SVmgikZI34wRy2cjjR4YdQs5xdyq9kqIWRQA8+v6jxPrF\nGNR9EADXTbqOW067hd3lu4mviLNlzxaenPMkh7U9DNCyjiJVlAQiZE/5Htq2aht2GJH0ytJX6NO5\nT/WH/Lf//G1GHj+SiwYFC9Qd0f4IiouKq4//86V/rn5c9WHfr0s/jR8ROYSqgyJix74dDHl0CPsO\n7As7lIyoqo+vy0cbPzqonv7OqXfyh7l/qN5ev3M9ZXvLqrcnfn1idQIAuHjwxRzT9Zj0BSxSIHQn\nEBEdizsy+5rZFLcsbvjgHPTy4pcZ1H1Q9ToOE2ZPoGWLllwx5AoA3lr1Foe3O5xjDzsWgOtOuY4O\nrTtUP/+qE6866Hyti1o3OQZV/4h8krqISlZ89amvctaxZ3HT528CYPHmxbRs0VLf3kXSqKAnkMsX\n63eu59017x5U1ZGrpi6fSnxFHDNj0pJJnNLrlMhO6idSqJQEImZ/xX7mb5ifF0lg+bbltGnZpnrK\nbDXKikSPkkDE9Onchzu+dEfYYaTFNz/zTXbs3xF2GCJSDyWBCMv1uYU6FnekY3FHQI2yIlGlLqIR\n9fs5v+euN+4KO4wm275vO1956isHjdYFJQGRqFLvoIjauGsjrYpa0aVNl7BDabL3173PsJ7Dwg5D\npOBoFlERkQKmWUTz0MJNC9m8e3PYYTRo7PSxvLz45bDDEJEmajAJmNl4Mys1s7lJZaPMbI2ZzUr8\nnJso/7KZvW9mc8xsppmdkfSck81srpktMrMHMvPr5J+JcyYyb8O8sMNo0LkDzuWko04KOwwRaaIG\nq4PM7HRgJzDR3YckykYBO9x93CHHngiUuvt6MzsOmOLuvRP7ZgA3uPtMM5sEPOjuU+q4pqqDRESa\nKCPVQe4+Ddha2/VqOXaOu69PPF4AtDGzVmbWA+jo7jMTh04Ecn80VIFbu30tN02+SWshiOSw5rQJ\n3GBms83scTPrfOhOM7sEmOXu5UAvYE3S7jWJMmkEd+fqF66O3Opjh7U9jC/3/3JOj2UQKXSpDhZ7\nBLjL3d3MxgDjgO9X7UxUBd0DnJVqYCUlJdWPY7EYsVgs1VPlPDPj8hMup12rdmGHcpC2rdpy/sDz\nww5DpGDF43Hi8XizztGoLqJm1hd4sapNoL59ZtYbeA34jru/myjrAUx198GJ7ZHACHe/to7rqU0g\nwsa9M47zB57PwG4Dww5FRJJksouokdQGkPhQr3IxMD9R3gV4CbilKgEAJNoJysxsuAV1B1cBLzQl\nUAms37k+7BDo3ak33dp2CzsMEUmDxvQOehqIAd2AUmAUcAYwFKgEVgDXuHupmf1f4FZgMUHScOBs\nd99kZp8FJgBtgEnufmM919SdQC027d7Elyd+mQ9++EH12roiIlU0YrgAVHolLSz7Y/yWbV3GGyve\n4OqTrs76tUWkcTRiuACEkQAgSD75uvSlSCHTnUAOWrhpIe+ueZfvDv1u2KGISIToTqBAtGvVjpYt\nsrMUxPhZ49m5f2dWriUi2ackkIP6dO7DFUOuyPh1KiorWFm2kgOVBzJ+LREJh6qDcpi7c6DyAK2K\nWoUdiohEgKqDCsx979zHfe/cl/bzLty0kFkfz0r7eUUkerTGcA774Wd/mJGpJJZtXcbm3Zs5+aiT\n035uEYkWVQeJiOQJVQcVqClLpjR7hlF3Z/KSyZoWWqTAKAnkgX+u/ydrt69t1jm279vOU/OeYl/F\nvjRFJSK5QNVBIiJ5QtVB0mQLNy1k295tYYchIiFREsgTFZUVnDnxTDbv3tyk5/3vh//LmyvfzFBU\nIhJ1qg7KI3NL53LCESdouUeRAqWppKVR3J2FmxYy+PDBYYciImmkNgGhorKCuaVz6z1myZYl3PLq\nLeoOKiK6E8g3q8tW86O//4iXvv1SvdVC7q5qI5E8o+ogqdfqstX07tRbH/4ieUrVQVKvm6bcxMx1\nM8MOQ0QiRHcCeeqd1e8wc91Mhhw5hFi/GBDe+sQikh26E5BqR3c+mqE9hjJ1+VS27NkChLc+sYhE\nl+4E8tyVz1+JmTHx6xPDDkVEMkwNwwJAfEWc+Io4AKPfGM0dX7yDohZFxPrFqquGRCT/pJIEGlxU\nxszGA+cDpe4+JFE2Cvh3YEPisNvdfXJi323A94ADwI3u/kqi/GRgAtAGmOTuNzUlUGm8Qz/sS2Il\nocUiItHWmEriJ4Bzaikf5+4nJ36qEsBg4FJgMPAV4BGr6Y/4W+D77j4QGGhmtZ1TRESyqMEk4O7T\ngK217KrtluNC4Bl3P+DuK4DFwHAz6wF0dPeq/okTgYtSC1maQtU/IlKf5nQXucHMZpvZ42bWOVHW\nC1iddMzaRFkvYE1S+ZpEmWSYkoCI1CfVheYfAe5ydzezMcB9wA/SFxaUlJRUP47FYsRisXSeXiSn\nxeOgPwmJx+PE4/FmnaNRvYPMrC/wYlXDcF37zOxWwN393sS+ycAoYCUw1d0HJ8pHAiPc/do6rqfe\nQSL1KCkJfkSSZXKwmJHUBpCo469yMTA/8fhvwEgza21mxwADgPfcfT1QZmbDEw3FVwEvNCVQEamx\ndy/s2BFuDM38AioR0Zguok8DMaCbma0i+GZ/hpkNBSqBFcA1AO7+oZk9B3wIlAPXJX2lv56Du4hO\nTutvIpLnXn8d3kwsAnfvvTBrFpx6alAt9O670KoV3HxzsP/JJ4Ptyy4LtqdMgZYt4cwzg+25c4Pt\nz3wm2N64EYqK4LDDGh+PqqTyQ4NJwN0vq6X4iXqOvwe4p5byD4ATmhSdiACwdCmMGhUkgapO18nV\nQaecApWVNdunnlpzHEDbtsGHfpUPP4TWrWuSwO9/HxxzbaKC9o47oGvXmqTyyCPQqRNccUWw/de/\nwuLFaf0VJSQaMSwSUe7BT4sWwb8ffww9ewb7Mt0mcOBAkFRatw62V64M7hSWLAnuAJYvh4kTg8QE\nwR2B7grCl5ERwyISjhtvhNNPh0svDb7VVyUAyPwHbstDPhn69g3+7d275trHHKPG6XygaSVFIuTA\ngZrH//VfcMkltR8XlW/dlZVw/fWwfn3YkUiqlATqoJ4Pkm3r1h1ct3/44UFVUFTFYkF8557btAZl\niZYIv8XCpSQg2eBe8+2/Z0945ZVof/Anq7ob+drXatoOJPfkyNstuw4cgD17wo5CCsHtt8OECTXb\nhx8eWijN9q9/Bb2KJLeoYThJPB78LF0Kf/hD0GUO1PNB0mv//ppvzj/7GXTuXP/xuaJnT/jCF8KO\nQppKXUTrMGoUjB4dagiSh7ZuhdNOgzlzgsFcIumkNYabobIS/vGPmu2qgTZr1x48CEekqdyDb/8Q\nDMCaPj3/E8Cjj6pdLVcoCSRs2RIMfikvD7arqn9uvBFmzqzzaSIN+vnP4eGHa7a7dAkvlmw5/vhg\nHIFEn6qDGlBZmTu9NSQ69uypaVPauRPatdP7SDJP1UEpePrp4I+0Lsl/uJs3Zz4eyX27d8PQobBr\nV7DdoUPhJoC9e4O76fr+xvJBLld9FehbM+AeTKTVmCl5lyyBCy4IniNyKPeabsXt2sEHH0D79uHG\nFAXFxfD5z0ObNmFHklm5nARUHdQEyV37RJI9+CCUlcGdd4YdiWRbeXnQ7hOFeZQ0gVwj/elPQaPV\nsGFNe15VAti7N+jdUVSU/tgk2pLn0N+5M6jqAfjhD4NvvVK3Dz6AadOC6qF8UDWuaNo0eO21mvJc\nG1dUkEmgbduaRrtU3H47nHQSXHll+mKS3FCVBMrLg3l+pk8Pun025/1UKI46CgYNCjuK9HCv+bB3\nD8YUReFOIBUFmQTOP795zx8zRn/0hcgd9u0LHrdqFazspfdB4/XsefB02Lnsq1+FsWODRXmsSZUv\n0VMwSeDtt2HGDPjxj5t/rnbtah6rnSD/Vd32z50Lf/lLTbVPrt32R8l99wWzjx53XNiRpOaRR2rW\nWIDcfh8UTMPwxx8HPXy++MX0nXP79mAKgPfe0zfCQuAezPE/ZkzYkeS+l14K2uR69Ag7ksbZvh1+\n/Wu47bZod/dVw3A9jjoq+EmnTp2Cb4hKAIXB7JMrbklqmlslm21t2wadACoqop0EUpFnv87B1q4N\nVmbK5Nw/3brVPNYcQ/np5Zfhz38OHufybX8UbdsGt9568IpqUbFvHyxaFDxu1Sro1ZSPcz7ldRI4\n6ij46U+zk7nHj4e77sr8dST7evUK1tYFJYF0a98ePv3paH67nj4dHnoo7CgyLy/bBNyz32K/Y0dw\nq1gIk4OJ5Cv34CeKSakxMjJ3kJmNN7NSM5tby76bzazSzA5LbBeb2dNmNtfMFpjZrUnHnpwoX2Rm\nDzQlyKaoqIARI4KqoGzq2LEmAUQwr0oK1q/P/zlvouSNN+CZZ8KNYfRoeOKJcGPItsbkuyeAcw4t\nNLPewFnAyqTikQDuPgQYBlxjZn0S+34LfN/dBwIDzewT50yHoqJgub5evTJx9oZVVsLZZ8OaNeFc\nX9LnmWcK7wMhTN27h99b6Lrr4Iorwo0h2xpVHWRmfYEXEx/uVWV/Au4C/gZ81t23JD7YrwMuBroA\nbwOfB9oAr7v7ZxLPHQmMcPdr67hek6uD9u0L+utHYeDGRx8FIyOjEIs0TxhVi5I97nD33cGHf/fu\nYUfTfFmbStrMLgBWu/u85HJ3nwJsBz4GVgBj3X0b0AtI/m68JlGWNjfcAC+8kM4zpm7wYH1w5Av9\nP2afO/ziF7BuXeavZRbMI1bI/89N7vVsZm2B2wmqgg7ddznQFugBdAPeMrNXUwmsJGkijlgsRqyB\nbhljxwb18lEyfTo8+2www6TkjnvvDRL5BReEHUlhMoM+fTI3/bQ7zJ4dzP8FuT0HWDweJ97Meayb\nXB1kZscDrwK7AQN6A2uB4UAJ8La7P5V43njgZWAaMNXdByfK01IdVF4ezOHeqVODh4Zi925YuhRO\nOCHsSKQpli4NpgZJ9+BCiYaNG+Gqq+DFF/Nv8F8mq4Ms8YO7z3f3Hu7e392PIajaOcndNwALgTMT\nwbQnaA/4yN3XA2VmNtzMDLgKaHblzTPPBK35UdWunRJALjr2WCWAqFi/Hu65Jz097ioqgn8PPzwY\nAJhvCSBVjeki+jQwnaBHzyozu/qQQ5xEggB+B7Q2s3nADGC8uy9I7LseGA8sAha7++TmBn/FFcEb\nJBf85CcwZ07YUUh9Zs2CTZvCjkKStW+fngbbl1+GH/yg+efJRzk3WMw9uF0fMCDLQTXT22/DiSfW\nLEIi0XPPPTB8OJx5ZtiRSLqVlwcrv+VDD6D6pFIdlHNJYMmSoCfQyy8Xdou+SKF56aXgzuCMMxp3\n/O9/H/T8Of30zMYVJVnrIhqmAQNyOwGsWQM336xRxVGi/4vc0KFDkAQa6+ij8/+bfzrkTBJ4++2a\nP9ZcTQAQNEqddlpu/w755sorgynBJdpisaC6rj7vvVczm28slj/LWWZSTiSB8nIYNw42bw47kuYr\nLoaLLw47Ckk2diycemrYUUhjVVQEg8l27Ai2qxK4e/A5sXJlnU+VWuREEmjVKpjPPd9u7Z5+OrjD\nkXD16KElQnNJixYHjw167bXgX7Og2/gxx4QTV66KdBL4xz/yu8vekUdC165hR1G4nnsuO1MTSHqZ\nBZ1DOnYMxhE8/njNGABpukgPl3j//aAOPd/uAKqoK2K4li9XNVCuisdrqoHWrw8mgYOgHUAL/zRN\nznURzUd79waLWP/4x8FU2CLSeCUlwY8USBfRfFRUFDRqRXGd1XykhWJEakT2TmDUqCAu3d5Jup1+\nelCPrO6D+SEe12dElYIYMZzv5s2DLVuCJTIlM/bsgbZtw45CJP1UHZQHNm+G0tKabQ1iSj8lAJEa\nSgIRE4u3zDBYAAAJVUlEQVTBpZfWbCsJpIc73HnnwQlWRJQEIu3559X/OV3coV8/jcsQOVSkxwkU\nqngcpk6FKVNgxoyabqNqJE9dixbwve+FHYVI9KhhOOLUB7r5li/XVAJSGNQwnKd27oTf/EZTHqfi\nwAH49rfzY/JBkUxQdVDExWLB1Lg7dgT/akRx07RsCe+8o6m7Reqi6iARkTyh6qACMGsWPPxw2FFE\n3549wboNu3aFHYlItCkJ5JjDD4f+/cOOIvratIGbbmracoQihUjVQSIieULVQQXmgQfgpZfCjiJa\n3OH119WTSqSxGkwCZjbezErNbG4t+242s0ozOyypbIiZTTez+WY2x8xaJ8pPNrO5ZrbIzB5I769R\nmM48E4YNCzuKaCkrg9/9TtNyizRWg9VBZnY6sBOY6O5Dksp7A48DnwY+6+5bzKwImAVc7u7zzawr\nsM3d3cxmADe4+0wzmwQ86O5T6rimqoOayF3dIEUKXUaqg9x9GrC1ll33Az89pOxsYI67z088d2si\nAfQAOrr7zMRxE4GLmhKo1M0dvv51WLQo7EjCpe8NIk2XUpuAmV0ArHb3eYfsGpjYP9nM3jezqiTR\nC1iTdNyaRJmkgRn8/OfwqU+FHUl41q0L1guurAw7EpHc0uQRw2bWFrgdOKuO850GDAP2Aq+Z2fvA\n9qZepyRpwpxYLEZMM6fV67jjah4fOBCMlC0kPXvCM88EE8WJFIp4PE68mfPNN6qLqJn1BV509yFm\ndjzwKrAbMKA3sBYYDpwBnOvuVyeedwewB3gKmOrugxPlI4ER7n5tHddTm0CKNm+Gs86Cd9+F1q3D\njkZEsimTXUQt8YO7z3f3Hu7e392PIajaOcndNwBTgBPMrI2ZtQRGAAvcfT1QZmbDzcyAq4AXmhKo\nNE63bjBpUuEkgN27Yfx4tQeIpKoxXUSfBqYDA81slZldfcghTk2C2AaMA94n6CX0vrtPThx3PTAe\nWAQsTiqXNOvRI/jXPZiBNJ9t3RqsFqaeUSKp0YjhPPb660Gf+WefDTsSEcmGVKqDlATymHtQXZKP\n8+fk8+8mkipNGyEHMav5kNy2Lb+qhmbPhgsvDDsKkdynO4ECMWYMdO8OP/pR2JGkz+7d0K5d2FGI\nRIeqg6ROlZXBnYEaUEXyl6qDpE4tWtQkgHnzcneCtSVL4L77wo5CJH8oCRSge++Fjz4KO4rUtGkD\nAwaEHYVI/lB1kOSMeBw0e4hI3VQdJE3iHowuzoV8u3u3FtARyQQlgQK2a1cwkGzPnrAjadhbb8HU\nqWFHIZJ/VB0kkfXQQ0G31qp1EkaPhlGjgsexmKqGRA6VSnVQgU04LHXZuDH4pn3ppeHF8OijcMIJ\ncNppwXbPnjB8OFx2Wc0xSTOMi0gaKAkIADt2wMqV2b3mk08GvX2+9a1g+7jj4KijavZfckl24xEp\nRKoOkqx5/vmgaufWW4Ptjz6C4mLo379xz1fvIJH6acSwpMUrrwSDyc47r+nPTV7w/vXX4Y9/hMce\nC7Y//hj274e+fdMXq4jUUBdRSYvOnYOfKvWtXrd/f83juXPhjDNqtk85Be6+u2b7qKOUAESiRklA\nPuFzn6tpnIWDk8DWrTWPN2yAQYNqxhkMHgwvJK0X17FjzQI3IhJNSgJSrzvuCFbuAigvhyFDYO/e\nYPuII4J6/arqn1atDr6DEJHoU+8gqVU8HvysXg0TJ8KRRwblEycGPXqqFBeHEZ2IpIsahqVBJSXq\nny+SC9QwLCIiTaIkIA1S33yR/KXqIBGRPJGR6iAzG29mpWY2t5Z9N5tZpZkddkh5HzPbYWY/Tio7\n2czmmtkiM3ugKUGKiEhmNKY66AngnEMLzaw3cBZQ24wz9wGTDin7LfB9dx8IDDSzT5xTPile30it\nAqPXooZeixp6LZqnwSTg7tOArbXsuh/46aGFZnYhsAxYkFTWA+jo7jMTRROBi1IJuNDoDV5Dr0UN\nvRY19Fo0T0oNw2Z2AbDa3ecdUt4e+BkwGkiul+oFrEnaXpMoExGREDV5sJiZtQVuJ6gKOlQJcL+7\n7zZrUtuEiIiEoFG9g8ysL/Ciuw8xs+OBV4HdBN/2ewNrgeHA/ya2AboCFcCdwPPAVHcfnDjfSGCE\nu19bx/XUNUhEJAWZWlnMEj+4+3ygelowM1sOnOzuW4EvJZWPAna4+yOJ7TIzGw7MBK4CHkrXLyEi\nIqlpTBfRp4HpBD16VpnZ1Ycc4hxc/1+X64HxwCJgsbtPbmqwIiKSXpEcLCYiItkRqWkjzOxcM1uY\nGFB2S9jxhMnMVpjZHDP7p5m9F3Y82VTbAEUz62pmr5jZv8xsipkVxKTVdbwWo8xsjZnNSvycG2aM\n2WJmvc3sdTNbYGbzzOz/JMoL7r1Ry2vxH4nyJr83InMnYGYtCKqKzgTWEbQdjHT3haEGFhIzWwZ8\nNtHWUlDM7HRgJzDR3Yckyu4FNrv7LxNfELq6+61hxpkNdbwWVe1t40INLssS4416uPtsM+sAfABc\nCFxNgb036nktvkUT3xtRuhMYTtBWsNLdy4FnCH6pQmVE6/8na+oYoHgh8GTi8ZMUyGDDegZrFlzn\nCXdf7+6zE493Ah8R9EYsuPdGHa9F1dirnJ1KuhewOmm70AeUOfAPM5tpZv8edjARcIS7l0LwBwAc\nEXI8YbvBzGab2eOFUP1xKDPrBwwF3gWOLOT3RtJrMSNR1KT3RpSSgBzsNHc/GTgPuD5RLSA1olGP\nGY5HgP7uPhRYDxRatVAHgjFJNya+BR/6XiiY90Ytr0WT3xtRSgJrgT5J21WD0AqSu3+c+Hcj8BeC\n6rJCVmpmR0J1feiGkOMJjbtvTJpr/THglDDjySYza0nwofd7d38hUVyQ743aXotU3htRSgIzgQFm\n1tfMWgMjgb+FHFMozKxdIsNXzcd0NjA/3KiyrnqAYsLfgO8mHn8HeOHQJ+Sxg16LxAddlYsprPfG\n/wAfuvuDSWWF+t74xGuRynsjMr2DIOgiCjxIkJzGu/v/CzmkUJjZMQTf/p1gVPdThfRaJAYoxoBu\nQCkwCvgr8CfgaILpyy91921hxZgtdbwWZxDUAVcCK4BrqurE85mZnQa8Ccwj+NtwgnnM3gOeo4De\nG/W8FpfRxPdGpJKAiIhkV5Sqg0REJMuUBERECpiSgIhIAVMSEBEpYEoCIiIFTElARKSAKQmIiBQw\nJQERkQL2/wF83VrGYtHu3gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEACAYAAAC57G0KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VOX1wPHvSULCqoIIyCYoYEXFgkK1tWVUVKQqrftO\nUWkr/Fxa96US+2C1tdbaurS14kZBUQGtVVCEcQVRQUACyBYwAcMaAoRsM+f3x50kA2SbzHLvzJzP\n8+Rx7p07956Mw8k7576LqCrGGGNST4bbARhjjIkPS/DGGJOiLMEbY0yKsgRvjDEpyhK8McakKEvw\nxhiTohpN8CJyt4gsE5GlIjJZRHJC+28UkeUi8rWI/HG/41eJyAoROSuewRtjjKlfVkNPikgvYAxw\njKqWi8grwGUisgE4HxigqpUicljo+P7ApUB/oBswW0T6qWowjr+DMcaYOjTWgi8BKoHWIpIFtAY2\nAr8GHlLVSgBV3RI6fiQwRVUrVTUfWA0MiUfgxhhjGtZgglfV7cCjwAacxF6squ8B/YCfiMh8EfGL\nyEmhl3QFCsJOUYDTkjfGGJNgDSZ4ETkKuAXohZO824rIlTilnfaqejJwOzC1gdPYXAjGGOOCBmvw\nwEnAp6q6DUBEpgE/xGmZTwNQ1c9FJCgiHYFCoEfY67uH9u1DRCzpG2NMM6iqNPXYxmrwK4CTRaSV\niAgwDMgDZgCnA4hIPyBbVbcCb+LchM0Wkd5AX2BBPUHajyrjx493PQav/Nh7Ye+FvRcN/0SqwRa8\nqi4WkReBL4AgsBD4V+jpiSKyFKgArgkdnyciU0N/BKqAsdqcqIwxxkStsRINqvon4E91PHV1Pcf/\nAfhDlHEZY4yJko1kdZnP53M7BM+w96KWvRe17L1oPnGjgiIiVrkxxpgIiQgaw5usxhhjkpQleGOM\nSVGW4I0xJkVZgjfGmBRlCd4YY1KUJXhjjElRluCNMSZFWYI3xpgUZQneGGNSlCV4k1L8+X63QzDG\nMyzBm5RiCd6YWpbgTcrIL85v1pzZxqSqRqcLNsbr/Pl+Zq+dzWPzHqO0qhRnbRrw9fLh6+VzNzhj\nXGSzSZqUsbV0K08seIJcX67boRgTFzabpElbHVt3dDsEYzzFErxJekENsq10GwCz1sxi0aZFLkdk\njDdYgjdJb92OdYyYPAKAVy9+lRO6nOByRMZ4g9XgTUpQ1Zqbq8akKqvBm7QUntwrA5XsrtjtYjTG\neIMleJPUtpVuY2nR0n323fP+Pbzy9SsuRWSMd1iJxiS1T7/9lDdWvMEfz/xjzb6gBskQa7uY1BNp\nicYSvDHGJAmrwRtD3aUbY9KNJXiTtBZtWsQnGz6p+7nvFjFt+bQER2SMt9hcNCZpbd+7nZ3lO+t8\nbtiRwxh25LAER2SMt1gN3hhjkkTMa/AicreILBORpSIyWURywp67VUSCItJhv+NXicgKETkr8l/B\nmNjYsXcHExdNdDsMY1zTYIIXkV7AGGCQqh4PZAKXhZ7rAZwJrA87vj9wKdAfGA48JWL91UzsvbT4\nJT5a/1GDx2RnZrN2x1qbI96krcaSbwlQCbQWkSygNVAYeu4vwB37HT8SmKKqlaqaD6wGhsQuXGMc\nPQ/u2ejskW2y2zDh9Ak2hYFJWw3eZFXV7SLyKLAB2AvMUtXZIjISKFDVJfv94+kKzA/bLgC6xThm\nYxjaa6jbIRjjeY2VaI4CbgF64STvtiJyDXA3MD780AZOY9+PjWtUlV/991fsKt/ldijGJFxj3SRP\nAj5V1W0AIjINGI2T8BeHWu/dgS9F5Ac45ZseYa/vTm1JZx+5ubk1j30+Hz6frznxmzQ09n9jGTNo\nDAMPH9josSLCiL4jrExjkpLf78fv9zf79Q12kxSRE4D/AIOBMuB5YIGqPhl2zDrgxFA5pz8wGafu\n3g2YDfTZv0+kdZM00VhStITeh/SmXU47t0MxJqEi7SbZWA1+sYi8CHwBBIGFwL/2Pyzs+DwRmQrk\nAVXAWMvkJtYGdB7gdgjGJAUb6GSSSnNnivzNzN9wxpFncG6/c+MQlTGJYbNJmpSlqvR/qj/+UX46\nt+0c0Wvzi/Pp0rYLLbNaxik6Y+LPErxJadv3bqdDqw6NH2hMCrIEb0w9VJW9VXtp3aK126EY0yw2\nH7xJWUW7i6J6/RMLnuDBDx+MUTTGeJ+14E1SKCkvYfAzg8kbm0dmRmazzlEZqCQrI8v6xJukZSUa\nk7JU1ZKzSWtWojEpKxbJfW/lXr7e/HUMojHG+yzBG88rrSxl3rfzYnKu1dtX88inj8TkXMZ4nZVo\njOet3LqSx+Y/xj/O/YfboRjjKqvBG2NMirIavDGNqAhU2FJ+Ji1Ygjee9s22b3h71dsxPWdWRhaL\nv1tMWVVZTM9rjNc0Nh+8Ma7aVb6LLXu2xPScGZLB4+c8HtNzGuNFVoM3xpgkYTV4Y5powocTWF+8\n3u0wjIkbS/DGs95Y8QZvrHgjbucf0HkAOVk5cTu/MW6zGrzxrB4H9yCepbzzjz4/buc2xgusBm+M\nMUnCavDGRODx+Y/z3KLn3A7DmLiwFrzxpHvev4fTep3GmUedGdfr5Bfn0y67HYe2PjSu1zEmFmyq\nApMS1mxfw8EtD6Zj645uh2KMZ1iCN6YZKgIVZGdmux2GMQ2yGrxJekENJvR6b33zFr+Y8YuEXtOY\nRLAWvPGcnzz3E54Y8QQDOg9IyPUqAhVkSAZZGdZr2HiblWhM0ttVvovWLVo3e+1VY1KVlWhM0muX\n0y7hyT0QDLBy68qEXtOYeLMEbzxl466Nrlx3295tjPnvmLiOnDUm0axEYzwjEAxw3NPHMf+6+Rzc\n8mC3wzHGc6wGb5KaqiLS5M+vMWkl5jV4EblbRJaJyFIRmSwiOSLyiIgsF5HFIjJNRA7e7/hVIrJC\nRM5q7i9i0pObyV1VmbJ0CpWBStdiMCaWGkzwItILGAMMUtXjgUzgMmAWcKyqngB8A9wdOr4/cCnQ\nHxgOPCUiVuc3jQpqkNlrZ7taAxcRvtj4Bdv2bnMtBmNiqbHkWwJUAq1FJAtoDRSq6mzVmtEonwHd\nQ49HAlNUtVJV84HVwJDYh21SzdbSrUxcNNH18syjZz9Kl7ZdXI3BmFhpMMGr6nbgUWADsBEoVtXZ\n+x12LVC9KnJXoCDsuQKgW2xCNamsU5tOTL5wstthGJNSGhy6JyJHAbcAvYCdwKsicqWq/if0/L1A\nhao29C+zzu/cubm5NY99Ph8+ny+SuI2Jm+e/ep4TOp/AwMMHuh2KSXN+vx+/39/s1zfYi0ZELgXO\nVNXrQ9tXAyer6jgR+QVOff4MVS0LPX8XgKo+HNqeCYxX1c/2O2/UvWj8+X58vXxRncN4w6Zdm5ib\nP5crjr/C7VAAeHvV2xzV/iiO7ni026EYs49Y96JZAZwsIq3EKY4OA/JEZDhwOzCyOrmHvAlcJiLZ\nItIb6AssiOxXaBp/vj8epzUu2FO5h+KyYrfDqDGi7whL7iYlNFiiUdXFIvIi8AUQBBYCzwDLgGzg\nvdBNsXmqOlZV80RkKpAHVAFj49HhfUnRErbs2RLr0xqX9OnQhz4d+rgdhjEpJ6kGOvnz/fjz/Sz+\nbjEzVs5g/NDxAPh6+axcY2Jq2vJprNuxjlt/eKvboRhTI21Gsub6c8n15cYmIOMaf76fdTvWMXrg\naLdD2UdBSQEVgQqObH+k26EYUyPSBJ/UE2CrKiXlJTZvSRLr2q6rJ+dh735Q98YPMsbjkrYF78/3\nU1ZVxqQlk5h0waQYRWbMvgLBgM1LbzwjbUo04LTgKwIV5GTlxCAqY/a1pGgJN75zIx/84gO3QzEG\nSLMEb5Lbo58+yuHtDvdM//f9BYIBSitLaZfTzu1QjAHSdEWnot1FXP765QSCAbdDMRG4/PjLPd37\nKTMj05J7ikjXcTMpkeA7tenELwf90mqlSaZru650bdfV7TAatb54vdshmChZgk9iIsJpvU9zOwwT\ngWT5tlURqODcKedSWlnqdijGRMx7/dOioKpMXTaVC465gBaZLdwOxzTgstcvY8ygMZx1lLfXhMnO\nzGbpDUvdDsM0Q/XAyIpABQ99/FDN/nQaGJlSN1lVldvevY3bf3S7zentceVV5QDWA8rETdHuIkrK\nS2iT3YYLXrmAedfNc329gWil5U3WaiJiCzYkiZysnKRK7nPWzWHH3h1uh2Ei8OWmL3ll2St0bdeV\n4X2GJ31yb46USvDhdpXvsrU1PaqgpMDVpfmaY866ORTuKnQ7DBOBEX1HcN9P7gOoKcl8u/PbpPvs\nRSNlE/xNM29i1ppZboeREMnWQ+DKaVeyZscat8OIyITTJ3Bcp+PcDsM0QV038H29fKgq18y4Juk+\ne9FIqRp8uIpABdmZ2XG9hlfYxGvG1Lr3/Xs5qsNRXDvw2gOeC2qQDEnedm1aTTbWkHRJ7iZxZq2e\nRcuslgztNdTtUEwD7vnxPQQ1WOdz4ck92ZN9U6Rsgq82bfk08ovz+e0pv3U7lJiq7gK2s2wnf/3s\nrzX7vd4FbPba2Qw9YmhSdmNtkdkiKeNON22y2zR6zOPzH6c8UM4dP7ojARG5J2VLNNVSfV7vb7Z9\nw29n/Za3rnjL7VAaVV5VzuWvX87Ui6fWOUWw3w+29rpprn99+S+GHjG0Scstbt+7nZzMnCb9MfCS\ntO4mWZfuB3VPueReWFLIuZPPJRAM0O/QfpzU9SS3Q2qSnKwcpl06rd7536NYPN4YWmW14qCcg5p0\nbIdWHZIuuTdHyif4attKt/HmyjfdDiMmurbryoTTJ9TMvVNdknkt7zXmrpvrYmSpb37BfMbPHe92\nGKYOV59wNYe3Ozyi13y781tunXVrynadTPkafLU9lXv4vPBzzj/6fLdDabbqnkEiwve7fL9mf3WC\nP6z1YbRv1d6l6Bq2p2IPz331HP835P9q9i1fDnPmwJYtUFYGf/xj7fE+nzfLNUe1PyqpP0OpaNW2\nVfTp0KdZA5k6t+3MqT1PjUNU3pDyNfhUURGoYPAzg5k7ai4dWnVwO5yIFe0u4sXFL3FFr9vo1s3Z\nN3s2fPcdXHUVbN4M558P8+e7G6dJLkENcsaLZzDp55PodlA3t8OJO6vBN8G20m1uhxCx7MzsJid3\nVeXmd25mzXbvDOjo3LYzp+XcxtixtfuGDXOSO0CnTjB8uDuxNYc1ULwhQzKYc82cqJO7qvJa3mvs\nrdwbo8i8Ie0S/J6KPQx9fih7Kva4HUqTFJYU1iSTprbcRYSf9vup63Otl5bCgAFQUeFsn3givPFG\n/cd7sSRTl62lWznu6eMsyXtErOaYWbhpIVtKt8TkXF6RliWaykBl0vRnPnfyuUw4fcI+NXcvu/9+\nGDsWuoTme8vPh5JWS5i5emaT+hxPmwbLlsHvfhffOKNVtLuIzm07ux1G2iouK2bkyyN57+r30mpQ\no63JmmICwUBUK1Vt37uda6Zfw+uXvB6X2RsXLoQOHaBXL2d72jT48Y/hsMNqjyksKWTF1hWcceQZ\njZ7vu++gqgq6d495qCbF5G3Jo/9h/WN+3j0Ve9hbtZeOrTvG/NzRshp8BEa/MZq8LXluh3GArzd/\nzdbSrQBRL0PYvmV77h96f8ySezAIxcW1259+CqtX125fcMG+yR2g20HdmpTcwWn5J0ty37xns5Vp\nXBSP5A7wzMJnmLRkUlzOnWhp3YL/YuMXDOg8wHNf8R7++GEGdB7AiL4jYn5uVY2qZjlxIuTlwZ//\nHMOg6lBYCAcdBO08vOb14GcG8+rFr9LrkF5uh5I2dpbtZNryaYweODpu14j230g8WQs+Aid1Pclz\nyR3grlPvikty/yD/A0a/ceA/jIZGkK5YAZdeWrs9alRkyf35r57nL/P+0vQXhDz4ICxYEPHLEmrB\n9QssuSdYcVkx2/duj+s1wpN7sqwdXJ9GW/AicjdwFRAElgKjgTbAK8ARQD5wiaoWhx1/LRAAblLV\nd+s4pyda8NU+2fAJh7Q8hGM7HetaDEuKllC0u4gzjzozbteoClaxcddGeh7cc5/9ubnOD0B5OUyY\nAL//PYg4PWBWr4b+zfw2vH3vdnaV7+KIQ46IKnZjEm3djnVcPf1qPhr9kWda9DFtwYtIL2AMMEhV\njwcygcuAu4D3VLUf8H5oGxHpD1wK9AeGA0+JeH8+zvU71/Pd7u9cjWFX+S52lu+M6zWyMrJqkntl\noLJmStWCAtgT6jWanQ0dOzqJvnq7uckdnK6dqZzclxQtYeOujW6HkfLKqsooKS9J6DV7t+/N1Iun\neia5N0djUxWUAJVAaxEJAK2BjcDdQPWk2C8AfpwkPxKYoqqVQL6IrAaGAJ4en3jF8Ve4HQI/6vmj\nhF7v+pcmsDW/CyfpDTz7LOTkODdHfT64+ebYXKMqWFXvxGJNEQjA7bc75ZpWrWITU6y9vepthnQb\n4vqYg1T39qq3eW/Nezx97tMJvW7S/39V1QZ/gF8Cu4DNwEuhfTvCnpfqbeDvwJVhz/0buLCOc6oX\nBYIB3bJnS8Kut2zzMr3v/fsSdr1wJWUlWl5Vrqqq48fH5xo3vn2jPrfouajO8cILqrt2xSYek9wq\nA5WuXDcYDOpNb9+k64vXu3L9cKHc2Wjerv5psHklIkcBtwC9gJ3AqyJy1X5/IFREGiqo1/lcbnXR\nF/D5fPg8MIzxvyv/y9ur3uaf5/0zIdfr1q6baxMdvT2jHf37w/HHQxnFwCExv8ZjZz9GRaAiqnNc\nc02MgjFJL5pvg9EQEc7pew6Htjo04df2+/34o5hHu8GbrCJyKXCmql4f2r4aOBk4HThNVb8TkcOB\nuar6PRG5C0BVHw4dPxMYr6qf7Xdebei6blFVghqMuu95U67jdl3vtdec2voxxyiDHj+dl674u6cX\nlS4rg5Yt3Y6ibl9u/JItpVsY3ieJJtNJEk99/hQdW3fkkmMvcTsUT4h1N8kVwMki0kqcjDQMyAP+\nC4wKHTMKmBF6/CZwmYhki0hvoC/g8c5utUQk7sl9857NDHtpGFXBqrhepzEXXeQkeBFh3v+9E/Pk\nXlBSELPf8ZtvYKiHl0GtClZRVlXmdhgp6Zw+5zCk2xC3w6ixtGgpnxd+7nYYTdZgglfVxcCLwBfA\nktDufwEPA2eKyDc4rfmHQ8fnAVNx/gi8A4z1ZFO9EQUlBVzwygX1LtwbjU5tOvH3c/7uytfNTz+F\np+u4R9Uyq7ZpvL54fUyudefsO5n37byYnKtfP2feeK/6Qfcf8LPv/cztMFJS7/a9PTXWYP3O9azf\nGZt/I4mQ1iNZ66OqfL7x85i2HPZW7qVVC3e7gmzYAGvWwGmn1f38jr07OHvS2Xw0+qO4zFtjTFN9\nkP8Bx3Y61pPzwbjJRrLGgIjENLlXBas45dlT2Lxnc8zO2Rw9e9af3AHat2rP/Ovneza5r1zpfAvx\nojXb13Dbu7e5HUbK+GD9B3y781u3w6iXqrJ2x1q3w2iUJfgGBIIBnl34bNS15KyMLD4c/SGd2nSK\nUWRNt3EjXH21M0lYU2SExqWVVZWxbPOyZl1zzro5lFaWNuu1Dfn2230nNvOSLm27cEbvpk2oZhp3\n/9D7GXj4QLfDqNeGnRu47s3r4lLGjSVL8A3IkAzWFa9jZ1nzRpiuL15f8wFo6mrvsda5M1x3HWRE\n+H964aaFPPX5UxFfT1V5dtGzUXePrMuwYd7tNtkmuw3n9D3H7TCSXrKsqHTEIUcw55o5NQ0ir7Ia\nfBxd8uol3PbD2zzVC8DEnz/fX7MQusXRdKrK4GcG8/olryfV9BbRjtiOhNXg42Rr6daISzWvXPSK\nK8k9GIRzznHmmImFvC155Bfnx+ZkMXDbbTBzpttRHKgqWMWApwfw7poD5tdzhT/f73YIERER5o6a\nm1TJHWD4pOHNLmfGmyX4Jrpl5i18kP9Bo8d9vflrCksKgditFRmpjAxnSt9uMVpk/uMNH7Nw08JG\njwtqkEc+eSTuffzHjPFmv/isjCzevPxNWmS0oKyqbJ+bhInejoUoBlA2W7scDy8AUI//XPAfV2ei\nbYgl+CZ64WcvNGlVornr5vLlpi8TENGBAmFTVx97rDPdbyz88sRfcsExFzR63N7KvZRVlcX96+rR\nR3tv8jF/vp9cfy7Pf/U8v//w99z8zs2cPensmlb08i3L+c2s39QcH6/t6jhGTR/FAx88QK4/l1x/\nbrNa84lK8GVVZYz737ikHSzm6bV5I5m4JlY/eHSysWQ3bpzqtGnxvcbkJZO1eG9xfC/SREuXuh1B\n3cbPHe92CFpRVaE3vn1jzfbOsp0Rvb6qSvWmm2IdVd3Kq8r15aUvJ+ZicTQtb5r++8t/x/UaxHKy\nMXOglxa/xJbSLfz2lN/W7FtStIR1O9Yx8nsjXYwMxo+HQ2I/Z9g+1uxYw87ynRzc8uD4XqgRgQDc\neCNMnXrgGrAGWmS2oEOrDjXbo98YzbjB4zi99+kNvs7vd35WrYLJk6F9e2e/z+f8xEN2ZjaXHndp\n4wd63HGdjnN9CpL9WS+aCBWWFJKZkUmXtl1qeiks3LSQtTvWclH/ixIej6ozEZfbJYuCkgIen/84\nj5z1iLuBeIBXeq+Ex1EZqCQzI5MMySCoQb7Y+EWjHQDuv99Z2SteqoJVLNq0iMHdBsfvIinGetHE\nWbeDutGlbRegtpfCoMMHuZLcwWnB3n574q9bWlnKHz76Q02LpXWL1o22DtOFF5I77BtHi8wWNX22\nC0oKeOTTR2iskVU9dmLHjvjEt3bHWh7/7PFG40g2u8p3MXnpZLfDACzBN9v64vXMWDGj8QPj7OKL\n4eGHE3/dTMmkdYvWNdtLipa4MtBnw4ba9WRN0/Q8uCevXvxqTS+vOevm1PSSuvdemBH6WPt8ztQQ\no0bVc6Io9Tu0H5MumOT61NmxVhWsYvF3iz0xytVq8BHy5/vx5/vZXbGbxUWLyfXnAk5rKZEtt82b\noVMnp5XVtm3CLlsjJyuHW06+pWbbrbLEYYdBnz4Jv2xKKSkvoUVGCwBuuAHatHH2+3xOCfC112J7\nPVVFUc+PAm2u9q3a88cz/+h2GIDV4KOS688l15eb8Otu2OC03OfNi3wKgniYvnw69/vvZ+kNS90O\nxUSpKljFdW9ex5MjnqRtdnxaDjNWzOC9Ne/x5E+fjMv5vWT19tUc2f7ImP0xsxp8GujZEz75xP3k\nXt3nekHhAr7e/HVUfa6jpQqlsZ/fLG089hhs2+Y8vuiYi2qSe3VDbO1auO++2FzrvH7n8buhv4vN\nyTzutndvI29LnmvXtxJNFBJdkli50ln8QgSyPPB/LrwslZOV48q3mWoTJ8KKFfCIdeKJWDDo/LRq\n5YzGPe/o82qee2HxC6zatop7T3mQQYNic73qXmjJxO9vXjfR6ZdOr7nH4EYZ01rwUUjk/6xgEMaO\ndab/NQe66ip3bjangowMuPVWaN36wOeuPP5KbvrBTbRuDRdcQFRrGsxaPYv3174fRaTuae6o3urk\nrqqu/O6W4JNERgbMnh27+WVize2ugTk5kBnf5XRTjiosWdLwMS0yW+wzFP/CVy7k7c++adb1Wma1\n3Gd5yHQya80sdpY3b9rxaHjgi75pyNKl0KOHM0LVy73J3E7w1WbOdObh6dHD7Ui8b906ZzDT9OlN\n/2y9eLqfG36dyTnvwJ7K3Xz13Vec2vPUJr12aC8PzhDXAL8f5s513psHHqjdH8mo3upedwB/X/D3\nmtHFiep1Zwne415/HX70IzjzTLcjSQ5r1zpdJy3BN+7II2v7vDdV716ZNVM1r92xlhkrZjSa4NcX\nr6fbQd1cWWg+Gj4f/O1vztgAaN54i/0TeaLvU1mJxuNycy25R2LsWDjxRLej8LaqqqYv4diQAZ0H\n8Oez/lyzPWXplAPmRffn+3no44eStvb++OMw0LsrBzbKErwHFRQ43SCNiYeJE53STDS2bIGf/tT5\nYxEuOzN7n21/vp+nf/o0Z/c5O7oLuqRHD+f+VywmWnOjjGkJ3oPWroWFja+vYeoRCDgLgmzd6nYk\n3nTttc6qWNHo2NGpS4d31738+Mvpe2hfALaVbuPCqReiqkk3FUFxsTNTafgfr2RN8DaS1aSkZcug\nf39v35hOVf58P++vfZ/CXYU899VzjB86Hkj8dB7NVVYGb70FF7kzf2CDIh3JagneI3bvhhdfdOYC\nsaRk4mHCBDj3XPj+92N3zqoqmDXLKdfUxa3pPFKVTVWQpMrLoaTE7ShSS1UVfP2121F4x8knwxEx\nXs+6stKZsrosOVfb28fq1fDFF25HEVuW4F1WPULu0EPhrrus9R5L69fD79JjypMmGTasdoWmWGnV\nCl54AVrWM34pGUoy1dasga++cjuK2LISjYuCQTjtNJg2zUnwxsTDjBlw3nnxH+kbCNho4niLaYlG\nRI4WkUVhPztF5GYRGSIin4f2fS4ig8Nec7eIrBKRFSJyVjS/TKoTcUaoVs+/bUyslZY6NwzLy+N7\nnfJyp7a/M/Gj8aNWUOBM25CKmtyCF5EMoBD4AfAi8JCqzhKRc4A7VPU0EekPTAYGA92A2UA/1X2X\nNkn3Fnz1wsbgdDUb73QyiOvCxuns/fehsBCuucbtSFLbd99Bl+SaJBKA8893BhTGarbMeIq0BR/J\n2OFhwGpV3SAim4CDQ/sPwUn8ACOBKapaCeSLyGpgCDA/guukPJ8P+vaFrl2dbVtyLr66dat7psRU\npuqspdqhQ+KumYzJHZwSlttrK8RLJL/WZcCU0OO7gEdFZAPwCHB3aH9XoCDsNQU4LXmznyuucG7q\nmPj73vfglFPcjiKx5s2D0aMTf91AwFk8pKIi8deOVPV0Dama3KGJLXgRyQbOA+4M7XoWuElVp4vI\nxcBEoL4ZU+qsxeSGNVt9Ph++NKtN+P1ODT7Nfm1XlZc7/5hbtHA7kvj74Q9jv5ZqU2RkOMl9zx7I\nzm78eLds2gQ//7kzJYiXbwz7/X78zZ2MnibW4EVkJHCDqg4PbZeo6kGhxwIUq+rBInIXgKo+HHpu\nJjBeVT/b73xpXYM37rj6arj8chgxwu1IjBcUFED37m5HEZl4DXS6nNryDMBqEame3Pl0oHoFgDeB\ny0QkW0TEjP2oAAANR0lEQVR6A32BBU0NJh3MnQsffeR2FOnpmWdSP7k/8ghMmuR2FI7iYrcjaFiy\nJffmaLREIyJtcG6wjgnb/UvgSRHJAfaGtlHVPBGZCuQBVcBYa6rvKxCwwUxuqW8wTiq56iq3I3Co\nwllnwSuvQO/ebkdT63//cyahGzXK7UgSwwY6mbQSCMBzzzk3IL1ce00FFRXeq8OvXu18szjpJLcj\naR6bi8bD7G+a+zIynOmYk3FATkP+9S8oKnI7in15LbkD9OmTvMm9OSzBJ0heXurXf5OBCPzhD4nt\nHx5vqs5EdV5MqAB33+3c0HTTW2854wLSjSX4BDnmGHj6abejMKlIxFnAI9YTicXKD3/o/kCzefNS\n71tbU1gN3qSlVavgllucm27JLC/PWdjEpAerwXvQV18duHalcddRRzkjLpNZURHcdJNz4zgZrFmT\n+BGu69cn9npeYwk+zlSdOcm9dgMs3WVkQL9+bkcRnc6dYfbs5OkN9MADiZ1vvbAQrryydkqCdGQl\nGpPWioth2zanRZ8sVJ2fVJ5DJVZUU2vciZVojInA//4H06e7HUVkXnvNuX9g6hYM1nZJTqXk3hzW\ngo+jV1+Fgw92RvQZEyuBAGzfDocd5nYkzXPnnXD22XD66fE5/1NPOe/PfffF5/xuirQFbwk+jubP\nd9asPOEEtyMxxju+/tqZviBeK5mVl8Pu3am5DKYleGOa4S9/gZ/8xNujHP/2NxgyBE4+2e1IjFus\nBu8Bqsmx4IGpNWiQsyJRFFNvx93xx0OPHm5HETsLFzo9XWLljjuc8Q2mliX4OFi0yKYlSDY+nzN9\nrJcT/GmnOcsPpoq5c2Hlytidr/r/oallJZo4KSmBgw5yOwoTqWuugXvvhaOPdjuSWu+8A2eeCVmR\nrKBsUlI8F902EbDknjz8/tqW+0svOZN2de/utAhnzoRzz4VTT3We37zZmagsUcm2shJeftmpu3t1\nrploRdOvv6LC6a12xRXWJbIuluBjbNYs+PGP3Z9cyTSdz7fv2rhhywVz2GHOiNFq48bBjTc6N2QB\npkxxSiddusQnthYt4IUX4nNur/j97533+Ne/jvy127c7vXJM3awGH0PBoPMP3m6wpo5jj4WOHWu3\nX321NrmDMw1u+FwwF1647/wnGzY0f64Yry95FyvjxsG11zbvtV26wEMPWeu9PlaDNyaM379vaz5S\nixY5szvm5DjbgwbBu+/W/pH461/hV79yxkc05LnnnJa7l2/6umn7dqekc8ghbkeSWNZN0pgoRJPc\nAQYOrE3u4HQFrE7uwSBs2VL7fGWl06+9uoWv6vQqUXW+BcyaFV0syebjj+GTT5p27LRp8OST8Y0n\nFVgNPkaeeAKOOALOO8/tSIxXZWTAgw/uu/3ss7WzQRYXw9VXw4IFznb4H4p0UFra9FLL9dfbEphN\nYSWaGFm+HFq29NYK8ia5hPfmeeABGD/eebz/TeB0VlWV3t1FbaoCY1JAbu6+vXnSSTAIe/ZAu3YH\nPnfGGc6UDccem/i4vMBq8AkWCKTnWo/GxMs//wl/+lPdz02ebEsURsJa8FH67DOnH2+yr+1pvCXa\n3jzJrKLCKcPYgiYHshKNC9K9LmhMPE2b5owo/uc/rb+7TVXgAkvuxsTexx/DihWQn+8MIEv35N4c\n9iUoChMnwq5dbkdhTGo6/HDo29dpQJ19ttvRJCdrezZTIOC0Llq0cDsSY1LP/l1Gq1mX0cg0WIMX\nkaOBl8N2HQn8TlX/JiI3AmOBAPA/Vb0z9Jq7gWtD+29S1XfrOG9K1eCNMfGTzl1G9xfTGryqrgQG\nhk6cARQC00XkNOB8YICqVorIYaFj+gOXAv2BbsBsEemnqsFm/TbGGGOaLZIa/DBgtap+C9wAPKSq\nlQCquiV0zEhgiqpWqmo+sBoYEsN4PeG++2D6dLejMCY9WEmm+SJJ8JcBU0KP+wI/EZH5IuIXkeql\nirsCBWGvKcBpyaeUceOcOd+NMfFnCb75mnSTVUSygfOAO8Ne115VTxaRwcBUnPp8XVKu2H744W5H\nYIwxjWtqL5pzgC/DSjEFwDQAVf1cRIIi0hGnRh++7nv30L4D5IbdNfH5fPiS4M/03r3OdK89e7od\niTEmHfj9fvxRLArQpJGsIvIy8I6qvhDa/hXQVVXHi0g/YLaq9gzdZJ2MU3fvBswG+uzfZSZZe9HM\nmwdPPeWs22mMMYkW86kKRKQNsB7oraq7QvtaABOB7wMVwK2q6g89dw9ON8kq4GZVPWDZgmRN8MYY\n46akmYvm/vsVERu4YIwxTZU0CT6ZWvCqMGEC3HwzHHSQ29EYY9JVUs0Hrwpz5rgZQdNUVTmJvW1b\ntyMxxpimczXBb97srElZVeVmFI1r0cJpvdv81MaYZGIlmkYEg5bYjTHekFQlmnAlJXD++U5fcy8Z\nO9amJTDGJCfPtOBVYf58OOWUhIfToN27nYUG2rRxOxJjTLpLmV40K1fC0UcnKCBjjEkCSVuiCVde\nDtdfD9u3uxfDjh2waJF71zfGmGh5MsHn5MCHH0KHDu7FsGIFvPKKe9c3xphoebZEUy0YhNtugzvu\ngC5d4hyYMcZ4WEqUaMKJODdeDz3U7UiMMSa5JEWCv/ji2sWt412XDwRgzBin94wxxiQzzyf4cKpw\n4YWwbFn8rhEMwtlnW7dIY0zy83wNfn8VFZCdHeOAjDEmCaRcDX5/4cn9+echPz925y4tjd25jDHG\nbUmX4MNVVEBWUxcdbIJx42DGjNidzxhj3JR0JZr6xKJ0U1Xl1Pmrb+gaY4yXpHyJpj433ABvvRXd\nObKyLLkbY1JHyrTgd+xwFuXIzIz8tQUFztw3Z5wR05CMMSam0rYF3759bXKfPz+ym68bN0JeXlzC\nMsYY18TwFqV3LF0Ku3ZBr15NO37IEOfHGGNSScqUaOqj6oyGNcaYZJe2JZr6PPYY/OMfdT+3dy+M\nGOG9VaSMMSYWUr4Fv22bM79Mp04HPhcMwmefeW8VKWOMqUvKrOgUD0VFTmu9Vy/w+8HnS3gIxhjT\nbFaiacCHH8LUqc7j//7XacEbY0yqSqsWfLhBg2DCBKcGb4wxySDSFnxKdpOsj9/v/ICz3upnn8GC\nBU6pxso1xphU02CCF5GjgZfDdh0J/E5V/xZ6/lbgEaCjqm4P7bsbuBYIADep6rvxCLw59k/kubku\nBWKMMQnQYA1eVVeq6kBVHQicCJQC0wFEpAdwJrC++ngR6Q9cCvQHhgNPiUha1fkj5a/+SmHsvQhj\n70Utey+aL5LkOwxYo6rfhrb/Atyx3zEjgSmqWqmq+cBqwJNjRL1SkrEPby17L2rZe1HL3ovmiyTB\nXwZMBhCRkUCBqi7Z75iuQEHYdgHQLaoI48QrCd4YY+KlSTdZRSQbOA+4U0RaA/fglGdqDmng5e52\nlzHGmDTVpG6SoRb7Dao6XESOB2bj1OMBugOFwA+A0QCq+nDodTOB8ar62X7ns6RvjDHNEPORrCLy\nMvCOqr5Qx3PrgBNVdXvoJutknLp7N5w/BH1c7/RujDFpqNESjYi0wbnBOqaeQ2qSt6rmichUIA+o\nAsZacjfGGHe4MpLVGGNM/CW0j7qIDBeRFSKySkTuTOS1vUhE8kVkiYgsEpEFbseTKCIyUUSKRGRp\n2L4OIvKeiHwjIu+KyCFuxpgo9bwXuSJSEPpcLBKR4W7GmCgi0kNE5orIMhH5WkRuCu1Pu89GA+9F\nRJ+NhLXgRSQTWIlT7ikEPgcuV9XlCQnAg8LvX7gdSyKJyI+B3cCLqnp8aN+fgK2q+qfQH//2qnqX\nm3EmQj3vxXhgl6r+xdXgEkxEugBdVPUrEWkLfAn8DKfzRlp9Nhp4Ly4hgs9GIlvwQ4DVqpqvqpU4\nUyCMTOD1vSrt1ptS1Y+AHfvtPh+ovon/As6HOeXV815Aen4uvlPVr0KPdwPLcTprpN1no4H3AiL4\nbCQywXcDvg3b9uwgqARSYLaIfCEi9d3EThedVbUo9LgI6OxmMB5wo4gsFpFn06EksT8R6QUMBD4j\nzT8bYe/F/NCuJn82Epng7W7ugX4UmufnHGBc6Ot62gv1vErnz8vTQG/g+8Am4FF3w0msUEnideBm\nVd0V/ly6fTZC78VrOO/FbiL8bCQywRcCPcK2e7DvtAZpR1U3hf67BWcSN0/O25MgRaG6IyJyOLDZ\n5Xhco6qbNQT4N2n0uRCRFjjJ/SVVnRHanZafjbD3YlL1exHpZyORCf4LoK+I9ApNfXAp8GYCr+8p\nItJaRNqFHrcBzgKWNvyqlPYmMCr0eBQwo4FjU1ooiVX7OWnyuRARAZ4F8lT1r2FPpd1no773ItLP\nRkL7wYvIOcBfgUzgWVV9KGEX9xgR6U1o6mWcAWf/SZf3Q0SmAEOBjjg11fuBN4CpQE8gH7hEVYvd\nijFR6ngvxgM+nK/gCqwDfhVWg05ZInIq8CGwhNoyzN3AAtLss1HPe3EPcDkRfDZsoJMxxqQoW4zD\nGGNSlCV4Y4xJUZbgjTEmRVmCN8aYFGUJ3hhjUpQleGOMSVGW4I0xJkVZgjfGmBT1/xjCU443DPZc\nAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -359,7 +357,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 16, "metadata": { "collapsed": false }, @@ -380,7 +378,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 17, "metadata": { "collapsed": false }, @@ -399,7 +397,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 18, "metadata": { "collapsed": false }, @@ -407,18 +405,18 @@ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 14, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEACAYAAABVtcpZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYFOW1+PHvYd8ZBAUBYSAERQWJCzcBcmmve3DlGjWu\nP03uNaL3alyiInEGhXgNSIxJiEaISBSNGhNlERSlVUARQRjWsM0AA7JPDzsMM+f3R/VM9wyz9nR3\nVXedz/P0Q9db1VWHpunT9a6iqhhjjPGnBm4HYIwxxj2WBIwxxscsCRhjjI9ZEjDGGB+zJGCMMT5m\nScAYY3ysxiQgIpNEZIeI5ESVZYlIvogsCT8uD5c3FZGpIpIjIitF5LGo15wbLl8rIs8n5q9jjDGm\nLmpzJ/AKcFkl5eNV9dzwY1a47CYAVe0HnA/cLSLdwvv+BPxUVXsDvUWksnMaY4xJohqTgKrOAwoq\n2SWVlG0HWopIQ6AFcBTYJyKdgNaquih83BTg2thCNsYYEy/1aRO4T0SWishEEckAUNXZwD7gWyAP\nGKeqIaALkB/12vxwmTHGGBfFmgQmAD1VtT/Or//nAETkVqA50AnoCTwsIpn1D9MYY0wiNIrlRaq6\nK2rzZWBa+PlA4B+qWgLsEpH5OG0D84DTol7TFdha1flFxCY0MsaYGKhqZVX1VartnYAQ1QYQruMv\nNQxYEX6+BrgofExL4PvAalXdDhSKyAAREeB24L3qLqiq9lAlKyvL9Ri88rD3wt4Ley+qf8SixjsB\nEZkKBID2IrIZyAIuFJH+QAlO3f/d4cNfAiaJyHKcpDFJVVeG990LTAaaATM10qPIGGOMS2pMAqp6\ncyXFr1Rx7FHg1ir2LQb61ik6Y4wxCWUjhj0uEAi4HYJn2HsRYe9FhL0X9SOx1iMlkoioF+Myxhgv\nExE0QQ3Dxhhj0pAlAWOM8TFLAsYY42OWBIwxxscsCRhjjI9ZEjDGGB+zJGCMMT5mScAYY3zMkoAx\nxviYJQFjjPExSwLGGONjlgSMMcbHLAkYY4yPWRIwxrgmmBd0OwTfsyRgjHGNJQH3WRIwxrji07xP\nyd+X73YYvlfj8pLGGBMvh4sOs3DrQoJ5QbYf2M6kbybRtU1XAAKZAQKZAXcDdFEwL+jK39+SgDEm\nKQ4cO0D/F/uzcvjKsi+7Tq06kR3IBmDPoT3uBecBbiUBqw4yxiTMyp0r2XFgBwCtmrQi554cmjZq\nesJxa3avYdhbw/DjsrKqypbCLa5d3+4EjDEJ8+7qdxl42kA6tuoIQIvGLcrtL/3le0aHM5hz2xxE\n6rQ8bsoL5gX5JPcTZq2fxaJti8rKk1k1ZgvNG2PiZt2edcxaP4v/+bf/ifkcRcVFXP/29Uy6ehId\nWnSIY3TeUVRcxObCzXznpO+UlWUHs8uqxmKVkIXmRWSSiOwQkZyosiwRyReRJeHH5VH7+onIAhFZ\nISLLRKRJuPxcEckRkbUi8nxdgjTGeMOMGTMIhULlygoKCpgxYwYA7Zq3I6NZRr2u0bhhYx4f/Djt\nm7ev13m87LNNnzFuwTi3w3CoarUPYDDQH8iJKssCHqzk2IbAMuDs8HY7IncbC4ELws9nApdVc001\nxnhPQUGBDh8+XAsKClRVde/evdrlP7rosrxlCbvmjLUzdFNoU8LOnyx7Du3R48XHy7ZLSkrK7Z+b\nO7fe1wh/d9b4vR79qPFOQFXnAQWV7KrsluNSYJmqrgi/tkBVVUQ6Aa1VtbTSawpwbU3XNsZ4S0ZG\nBk+OepIHf/kgeXl5jBw5kmkTp9G3W9+EXXPD3g3sO7ovYedPlrun3828zfPKtiu2f7jVPbY+DcP3\nichtwNfAQ6paCPQGEJFZQAfgb6o6FugCRI8KyQ+XGWNSzBvr36DjpR3p0aMHubm5ZGZmJvR60e0L\nB48dpERLaN20dUKvGS9Hjh+hWaNmALzxn2/QqIH3+uLEGtEE4Knwr/zRwHjgp+HzDQLOB44AH4vI\n10Cd03h2dnbZ80AgQCAQiDFUY0x9HDh2gGn/msZP+v4EgDtOv4ORfx1Jbm4uY8eOZcyYMWRk1K8d\noLbeXf0uy3cuZ8ixIQwaNKjcdUOhEPPnz2fo0KFJiaUm2/Zv40ev/4gldy+hgTRISAIIBoMEg8H6\nnaQ2dUZAd6LaBKraB9wIvBK1byTwENAJWB1VfhPwp2quV++6MWNMfBw6dkj/d+b/6vHi4ye0CVTc\nTgavxDF9+vQTrldQUKDTpk0r2y48Upi0eFRjaxOobRLIBJZHbXeKev4LYGr4eQZO9VAznLuCj4DL\nw/u+BAbgtCXMLC2v4nqJfq+MMdXInputC/MXnlBe1Rff9OnTkxVamW9yv9Gel/bUjRs3Jj0BqJ6Y\neAoKCnTQsEE6evbopMYRLZYkUOM4ARGZCgSA9sAOnJ5BF+L0GCoB8oC7VXVH+PibgRHhfTNU9fFw\n+XnA5HCCmKmq91dzTa0pLmNMfB0rPkaThk0A+GLLF/Q6qRcntzzZ5aiqVlxSzOzFsxk6YGhS2iYq\nEwqFeOKJJ3jkkUcYO3YsvxjxCzqf0vmEQXHJEss4gRorqVT15kqKX6nm+KnA1ErKFwOJ60JgjKm1\nivPUzNk4hz8v/jNv/fgtAH5w2g9ciqz29u/bz4zJM8raJk6/4XTu+sFdtGrSKmkxtGrTilW9V0Ua\nybtkJu3a8WJzBxnjQ3Nz57Iwf2HZXD1Dug9h8rWT3Q2qDkp/gY8ZM4bMzExGPT2KKeOnUBgqTGoc\nB/YdoMM3HdiwcQNjx449YSBdKrAkYIwPKcroz0ez+9BuwBml61YVRizmz59frldSh5M6MOfVOSxd\ntBSAb/d/S3FJcUKu/dXWr/j1578uS0QvP/8yPXv0ZMyYMTzxxBMplwhs7iBjfOL9f73PrPWzOKXl\nKYz6dBRZQ7KA9JzH/57p9/Cj7/6Iq06/Ku7n3n1oN6t2rWL/iv2e66YaS5uAJQFjfOL9f73P6l2r\neXTwo3GZrMzLSrQEQeI2K+kLC1/gyt5X0rNdz7icL1ESMoGcMSZ1bSzYSImWAHD16Vfz6OBHXY4o\nORpIg7IE8NbKtxgVHFWv83Vu3ZmG0jAeoXmOJQFj0tgvZv+CVbtWnVCebtU/1Rn63aHcfs7tdXpN\n6EiIV76JdIK8/szr6Z7RPd6heYIlAWPSzN7De8ue//PGf3L2KWefcIyfkkDLJi3p0a4H4Mw99Iev\n/lDjCmYNpSEbCjaU3UWlM0sCxqSRVbtWcd3frivb9ttKXTU5WHSQI8ePlHtfgnlBwFnics3uNQC0\nbtqa0f8xmgaS/l+R1jBsTIorLilG0bIJyoqKi2jcsLHLUaWGvFAek5dOJjuQzatLX6VVk1b855n/\n6XZYMbOGYWPSWGWreoVCIX485se8lvNaWZklgNopLinmlndvYf/R/QDc0f+OlE4AsfLe5NbGmEoN\nGjSobJRs27ZtKSws5IknnuC3v/otp3U8ze3wUkowL0gwL8jFPS7mqc+eKlufIB3HTNTEqoOMSSGh\nUIhHH3+UL7p9wfc3fZ/f/N9vkjaXf7pKpzETCZlAzhjjHRkZGTz+6OP06NGD93PftwRg6s3aBIxJ\nATPWzuDpT58mFAoxduzYspkzU22eGi/yW/VPRVYdZEwK2HlwJ1t3bmXiuIllE6dFz6RpdwQGrHeQ\nMWnl4Q8fZnPhZgBOaXkK21ZtK/eFn5GRwZgxY5g/f76bYZoUZ3cCCVRx4Q5j6mLW+ln8oOsPaNus\nrduhmBRhdwIeUzoS0Zja2FK4hRcWvlC2fXmvyy0BmISzJJAgx4qP+WLeERM/bZq2KVvj15hksS6i\ncVY6CGX62uks/nZx2dwjfhyEYmr28caP6dKmC2d0OIO2zdry8/N/7nZIxmesTSBOthRu4a2Vb/HQ\nwIcAOHr8KM/MeyZtBqGY+IluK3o953UyMzIZ1G2Qu0GZtGBtAkl29PjRsudtm7UtV3/btFFTN0Iy\nHldcUszLi18u276l3y2WAIyrLAnESFUZMHEAm0KbAKc+92fn/qzcMYHMAJOXTi5bzNuYopIilu9c\nzsFjB90OxRigFm0CIjIJuBLYoar9wmVZwH8BO8OHjVDVWVGv6QasBLJUdXy47FxgMtAMmKmqD8Tx\n75EUC/MX0qxRM87pdA4iwvy75tOqSasqjw9kBpiwaAKFRwrp0KJDEiM1XrIptIlPcj9hU6Hzg2H5\nzuWMXTAWsLYi477aNAy/AvwemFKhfHzpF3wlngNmVij7E/BTVV0kIjNF5DJVnV23cBNrxowZDBo0\nqNzoy1AoxPz58xk6dCibCzfTpmkbzuEcgGoTQKnhFwxPWLwmNSzcuhBFy7UPWVuR8Yoaq4NUdR5Q\nUMmuShsfROQaYCPOnUBpWSegtaouChdNAa6tc7QJVjpVb+l8LPPWzuO8G89j0CCnzvbHZ/2Yy3pd\nFtO5U62h28SuREuYvnZ62b/5DWfdwF3fu8vlqIypXH3aBO4TkaUiMlFEMgBEpCXwS2AU5ZNEFyA/\najs/XOYpbdu25ep7rmbEiBHk5eXx+vOv8/eX/l7veVmOHj9K/5f6s+/ovjhFarxMVXl39bsUHKns\nt5NNWGa8JdZxAhOAp1RVRWQ0MA74GZAN/FZVD9V3bdPs7Oyy54FAgEAgUK/z1dafV/2Zx+59jB49\nepCbm0tmZma9z9m0UVNm3DyDNk3b1D9A40mbCzez48AOLuhyAQ0bNOQv1/ylymMtCZh4CQaDBIPB\nep2jVuMERKQ7MK20YbiqfSLyGdA1vKsdUAw8CbwLzFXVPuHX3AQMUdV7qrhe0sYJTFwykY4tO3LV\n6VcBlM3M+MgjjzB27FibodHUyuz1s8kN5dpgL+OqRI4TEKKqd8J1/KWGASsAVPXfVbWnqvYEngd+\nraoTVHU7UCgiA8S5RbgdeK8ugcaLqrL9wPay7fM7n0/fjn0Byk3Nm5mZyZgxY8q1EdTXwWMH+WzT\nZ3E5l0meytb2LSgo4PE/Pc7xkuMAXNbrMksAJiXVmAREZCqwAOgtIptF5E7gNyKSIyJLgSHAL2px\nrXuBScBaYF10l9Jk+iL/C+6ZEbkB6d+pP5kZmQDMnz8/oVP17jm8hynLKnayMl5XscNA6Y+Fgg4F\n7Dq4y+XojKmftJw2InpYfnFJMU9/9jQjfjiCJg2blPXYqG+bhfGXUCjE/Y/czxV3XMHnb3xu1YTG\nk2yN4bC5uXMZ3G0wjRo0omGDhnRo0YHDRYdp0rCJffmbmGRkZHDtXdcybOAwcnNzLQGYtJGW00Z8\nuOFDXst5rWz7vgH3eWpe9lnrZ/HM58+4HYapgary5oo3OXL8CKFQiDmvzbG1fU3aSZs7gdIpnAG+\n3Poll37nUrKD2Z4clt+vY7+ydgjjXSLCyp0rObP1mbz0m5fKqoBKOwxYlZBJB2nZJpAdzLZh+SYm\n+fvyWb5jOVd894qyspqmEzHGK2wq6RRTcLiA0BGrVvCS/Uf3s3LXynJlQ4cOPeEXf0ZGhiUAkxbS\nMgl4rfqnKqM/G82cjXPcDsP33lj+Rlky7nNyHx4e+LDLERmTPJ6uDkr3W25Vtd5KHjBuwTiuPeNa\nep3Uy+1QjKmXtKoOKh2QUzqDZzqyBJBcpR0Htu3fxjur3ikrf3jgw5YAjG95Ngn4qfdFdjDbVh9L\ngtIkUFxSzIa9G9wNxhiP8GwSeOSRR3yRAADO6HCGrTdQhcrm7QmFQsyYMaPa1+04sIPDRYfLth+c\n/SB7D+8F4LS2p/Ho4EfjH6wxKcizScBPA3JuOvsmTm55sttheFJV8/YMHDiQ4pLisuNe/PpF1uxe\nU7Y9fOZwlu9cTjAvSHYwm72H9/L7r37vdB8OZpfdFRjje6rquQegBQUFOnz4cC0oKFC/OHTskNsh\neFJBQYFedctVOmfxnLLPxI1v36j/WP2PsmP+vurvunHvxmrPkzU3K8GRGuMu5yu9bt+3nr0TiPcM\nnl63/+h++r3Yj6PHj7odSkLU9Mt79a7V5erpn5z7ZNnUHxkZGQy5eQgXn3dxWTXhlOumcO0ZkRVK\nh/UZRo92PRISuzHpzLNJAPw1IKd109YsvXspTRs1dTuUhPhg3Qfl1nGYvHRyufmdPt/8OTk7csq2\nh18wvOxLPhQKsXHGxnLz9jRp2KTOMaTK+BFjksnT4wRM+hj6+lAu+c4lPPD9BwBYt2cdjRo0qvHX\ne/RCPxkZGSdsG2MiYhknYEnAY7Yf2M6X+V+Wq+pIVXNz5xLMCyIijPp0FFlDsgDqNKmfzdtjTO3Z\negJp4FjxMVbsXJEWSSA3lEuzRs14/IePA8Q0qV9lX/R+qiY0JtEsCXhMt7bdGPnvI90OIy5+fOaP\n2X9sv9thGGOq4emGYb8qHSAVXSVWmwFSXtO6aWs6t+4MWKOsMV5lScCDBg0axPV3X8/jM5xqlFSa\nR2nf0X1c8foV5UbrgiUBY7zKkoAHZWRk8OL4F9k9fTd5eXkp1RumTdM2PH3h0zRv3NztUIwxtWC9\ngzwsLy+PHj16kJubS2ZmptvhGGM8Lq2mkva7UCjE2LFjmbN4Dk8/87Tn51Eat2AcH6z7wO0wjDF1\nVGMSEJFJIrJDRHKiyrJEJF9EloQfl4fLLxaRr0VkmYgsEpELo15zrojkiMhaEXk+MX+d9BA9IOrj\ngo+57t7ryk2i5kWX97qc7536PbfDMMbUUY3VQSIyGDgATFHVfuGyLGC/qo6vcOw5wA5V3S4iZwGz\nVbVreN9C4D5VXSQiM4HfqersKq7p6+ogGyBljIlFQqqDVHUeUFDZ9So5dpmqbg8/Xwk0E5HGItIJ\naK2qi8KHTgFSfzRUgqTKwuZb923lgVkP2FoIxqSw+rQJ3CciS0Vkooi0rbhTRK4HlqhqEdAFyI/a\nnR8uM7Wgqtz53p2eW33spOYncXHPi22ZTGNSWKwjhicAT6mqishoYDzw09Kd4aqgZ4BLYg0sOzu7\n7HkgECAQCMR6qpQnItzS9xZaNG7hdijlNG/cnCt7X+l2GMb4VjAYJBgM1uscteoiKiLdgWmlbQLV\n7RORrsDHwB2q+mW4rBMwV1X7hLdvAoao6j1VXM/XbQJeN/6L8VzZ+0p6t+/tdijGmCiJ7CIqRLUB\nhL/USw0DVoTLM4DpwKOlCQAg3E5QKCIDxKk7uB14ry6BGkf0nPxu6dqmK+2bt3c7DGNMHNSmd9BU\nIAC0B3YAWcCFQH+gBMgD7lbVHSLyBPAYsA4naShwqaruFpHzgMlAM2Cmqt5fzTXtTqASuw/t5uIp\nF7P4vxfTsEFDt8MxxniMrSfgAyVaQgNJ/Bi/it1UNxZs5IPlH5C5P9NzvZSMMQ4bMewDyUgA4Exi\nFz1ALRQK8c8J/0yJSeyMMbVnSSAFrdm9hslLJyf0GhkZGYwZM4YnnniCvLw8Jo2bxNsvvp0Sk9gZ\nY2rPFpVJQS0at6BRg8T/02VkZNDtim5lk9hZAjAm/didQArq1rYbt/a7NeHX2bN3D+9MfIdla5Yx\nduxYT89dZIyJjSWBFKaqFBUXJeTcoVCIJ3/1JB9N/oh+p/crqxqyRGBMerHeQSls3IJxHC85zmOD\nH4vredfsXsPsD2Zzx1V32CR2xqQQ6yLqM/uO7ktI+8DMdTPZc2gPt51zW1zPa4xJLEsCxhjjYzZO\nwKdmr59d7xlGVZVZ62fZtNDG+IwlgTTwzfZv2Lpva73Ose/oPl5f/jpHi4/GKSpjTCqw6iBjjEkT\nVh1k6mzN7jWEjli3T2P8ypJAmiguKeaiKRex59CeOr3unVXv8NmmzxIUlTHG66w6KI3k7Mih7yl9\nbblHY3zKuoiaWlFV1uxeQ5+T+7gdijEmjqxNwFBcUkzOjpxqj1m/dz2PznnUuoMaY+xOIN1sKdzC\nz2f8nOk/mV5ttZCqWrWRMWnGqoNMtbYUbqFrm6725W9MmrLqIFOtB2Y/wKJti9wOwxjjIXYnkKa+\n2PIFi7Ytol/HfgQyA0Dy1ic2xrjD7gRMmdPankb/Tv2ZmzuXvYf3Aslbn9gYkzrsTiDN3fbubYgI\nU66b4nYoxpgEs4ZhA0AwL0gwLwjAqE9HMfKHI2nYoCGBzEBZ1ZAxJv3EkgRqXI1ERCYBVwI7VLVf\nuCwL+C9gZ/iwEao6K7zvceAu4Dhwv6p+GC4/F5gMNANmquoDdQnU1F7FL/vsQLZrsRhjvK02lcSv\nAJdVUj5eVc8NP0oTQB/gBqAPcAUwQSL9Ef8E/FRVewO9RaSycxpjjEmiGpOAqs4DCirZVdktxzXA\nm6p6XFXzgHXAABHpBLRW1dL+iVOAa2ML2dSFVf8YY6pTn+4i94nIUhGZKCJtw2VdgC1Rx2wNl3UB\n8qPK88NlJsEsCRhjqhPrCuUTgKdUVUVkNPAc8LP4hQXZ2dllzwOBAIFAIJ6nNyalBYNg/yVMMBgk\nGAzW6xy16h0kIt2BaaUNw1XtE5HHAFXVZ8P7ZgFZwCZgrqr2CZffBAxR1XuquJ71DjKmGtnZzsOY\naIkcLCZEtQGE6/hLDQNWhJ+/D9wkIk1EpAfQC/hKVbcDhSIyINxQfDvwXl0CNcZEHDkC+/e7G0M9\nf4Aaj6hNF9GpQABoLyKbcX7ZXygi/YESIA+4G0BVV4nIW8AqoAgYHvWT/l7KdxGdFde/iTFp7pNP\n4LPwInDPPgtLlsDAgU610JdfQuPG8NBDzv5XX3W2b77Z2Z49Gxo1gosucrZzcpztM890tnftgoYN\n4aSTah+PVUmlhxqTgKreXEnxK9Uc/wzwTCXli4G+dYrOGAPAhg2QleUkgdJO19HVQRdcACUlke2B\nAyPHATRv7nzpl1q1Cpo0iSSBv/7VOeaecAXtyJHQrl0kqUyYAG3awK23Otv//CesWxfXv6JxiY0Y\nNsajVJ1HgwbOn99+C507O/sS3SZw/LiTVJo0cbY3bXLuFNavd+4AcnNhyhQnMYFzR2B3Be5LyIhh\nY4w77r8fBg+GG25wftWXJgBI/BduowrfDN27O3927Rq5do8e1jidDmxaSWM85PjxyPNf/Qquv77y\n47zyq7ukBO69F7ZvdzsSEytLAlWwng8m2bZtK1+3f/LJTlWQVwUCTnyXX163BmXjLR7+iLnLkoBJ\nBtXIr//OneHDD739xR+t9G7kqqsibQcm9aTIxy25jh+Hw4fdjsL4wYgRMHlyZPvkk10Lpd7+9S+n\nV5FJLdYwHCUYdB4bNsBrrzld5sB6Ppj4OnYs8sv5l7+Etm2rPz5VdO4MP/iB21GYurIuolXIyoJR\no1wNwaShggIYNAiWLXMGcxkTT7bGcD2UlMBHH0W2SwfabN1afhCOMXWl6vz6B2cA1oIF6Z8AXnzR\n2tVShSWBsL17ncEvRUXOdmn1z/33w6JFVb7MmBqNGQN//GNkOyPDvViS5eyznXEExvusOqgGJSWp\n01vDeMfhw5E2pQMHoEUL+xyZxLPqoBhMner8J61K9H/cPXsSH49JfYcOQf/+cPCgs92qlX8TwJEj\nzt10df/H0kEqV3359KPpUHUm0qrNlLzr18PVVzuvMaYi1Ui34hYtYPFiaNnS3Zi8oGlT+P73oVkz\ntyNJrFROAlYdVAfRXfuMifa730FhITz5pNuRmGQrKnLafbwwj5JNIFdLb7/tNFqdf37dXleaAI4c\ncXp3NGwY/9iMt0XPoX/ggFPVA/Df/+386jVVW7wY5s1zqofSQem4onnz4OOPI+WpNq7Il0mgefNI\no10sRoyA730PbrstfjGZ1FCaBIqKnHl+Fixwun3W5/PkF6eeCmec4XYU8aEa+bJXdcYUeeFOIBa+\nTAJXXlm/148ebf/p/UgVjh51njdu7KzsZZ+D2uvcufx02Kls6FAYN85ZlEfqVPniPb5JAvPnw8KF\n8OCD9T9XixaR59ZOkP5Kb/tzcuAf/4hU+6Tabb+XPPecM/voWWe5HUlsJkyIrLEAqf058E3D8Lff\nOj18fvjD+J1z3z5nCoCvvrJfhH6g6szxP3q025GkvunTnTa5Tp3cjqR29u2D3/8eHn/c2919rWG4\nGqee6jziqU0b5xeiJQB/EDlxxS0Tm/pWySZb8+ZOJ4DiYm8ngVik2V+nvK1bnZWZEjn3T/v2kec2\nx1B6+uAD+PvfneepfNvvRaEQPPZY+RXVvOLoUVi71nneuLHTqykd53xK6yRw6qnwyCPJydyTJsFT\nTyX+Oib5unRx1tYFSwLx1rIlnH66N39dL1gAL7zgdhSJl5ZtAqrJb7Hfv9+5VfTD5GDGpCtV5+HF\npFQbCZk7SEQmicgOEcmpZN9DIlIiIieFt5uKyFQRyRGRlSLyWNSx54bL14rI83UJsi6Ki2HIEKcq\nKJlat44kAA/mVROD7dvTf84bL/n0U3jzTXdjGDUKXnnF3RiSrTb57hXgsoqFItIVuATYFFV8E4Cq\n9gPOB+4WkW7hfX8CfqqqvYHeInLCOeOhYUNnub4uXRJx9pqVlMCll0J+vjvXN/Hz5pv++0JwU4cO\n7vcWGj4cbr3V3RiSrVbVQSLSHZgW/nIvLXsbeAp4HzhPVfeGv9iHA8OADGA+8H2gGfCJqp4Zfu1N\nwBBVvaeK69W5OujoUae/vhcGbqxe7YyM9EIspn7cqFo0yaMKTz/tfPl36OB2NPWXtKmkReRqYIuq\nLo8uV9XZwD7gWyAPGKeqIaALEP3bOD9cFjf33QfvvRfPM8auTx/74kgX9u+YfKrw61/Dtm2Jv5aI\nM4+Yn/+d69zrWUSaAyNwqoIq7rsFaA50AtoDn4vInFgCy46aiCMQCBCooVvGuHFOvbyXLFgAf/ub\nM8OkSR3PPusk8quvdjsSfxKBbt0SN/20Kixd6sz/Bak9B1gwGCRYz3ms61wdJCJnA3OAQ4AAXYGt\nwAAgG5ivqq+HXzcJ+ACYB8xV1T7h8rhUBxUVOXO4t2lT46GuOHQINmyAvn3djsTUxYYNztQg8R5c\naLxh1y64/XaYNi39Bv8lsjpIwg9UdYWqdlLVnqraA6dq53uquhNYA1wUDqYlTnvAalXdDhSKyAAR\nEeB2oN6VN2++6bTme1WLFpYAUtF3vmMJwCu2b4dnnolPj7viYufPk092BgCmWwKIVW26iE4FFuD0\n6NksInd7hIKrAAALjElEQVRWOEQJJwjgJaCJiCwHFgKTVHVleN+9wCRgLbBOVWfVN/hbb3U+IKng\n4Ydh2TK3ozDVWbIEdu92OwoTrWXL+DTYfvAB/Oxn9T9POkq5wWKqzu16r15JDqqe5s+Hc86JLEJi\nvOeZZ2DAALjoIrcjMfFWVOSs/JYOPYCqE0t1UMolgfXrnZ5AH3zg7xZ9Y/xm+nTnzuDCC2t3/F//\n6vT8GTw4sXF5SdK6iLqpV6/UTgD5+fDQQzaq2Evs3yI1tGrlJIHaOu209P/lHw8pkwTmz4/8Z03V\nBABOo9SgQan9d0g3t93mTAluvC0QcKrrqvPVV5HZfAOB9FnOMpFSIgkUFcH48bBnj9uR1F/TpjBs\nmNtRmGjjxsHAgW5HYWqruNgZTLZ/v7NdmsBVne+JTZuqfKmpREokgcaNnfnc0+3WbupU5w7HuKtT\nJ1siNJU0aFB+bNDHHzt/ijjdxnv0cCeuVOXpJPDRR+ndZa9jR2jXzu0o/Outt5IzNYGJLxGnc0jr\n1s44gokTI2MATN15erjE1187dejpdgdQyroiuis316qBUlUwGKkG2r7dmQQOnHYAW/inblKui2g6\nOnLEWcT6wQedqbCNMbWXne08jE+6iKajhg2dRi0vrrOajmyhGGMiPHsnkJXlxGW3dybeBg926pGt\n+2B6CAbtO6KUL0YMp7vly2HvXmeJTJMYhw9D8+ZuR2FM/Fl1UBrYswd27Ihs2yCm+LMEYEyEJQGP\nCQTghhsi25YE4kMVnnyyfII1xlgS8LR337X+z/GiCpmZNi7DmIo8PU7Ar4JBmDsXZs+GhQsj3Uat\nkTx2DRrAXXe5HYUx3mMNwx5nfaDrLzfXphIw/mANw2nqwAH4wx9syuNYHD8OP/lJekw+aEwiWHWQ\nxwUCztS4+/c7f9qI4rpp1Ai++MKm7jamKlYdZIwxacKqg3xgyRL44x/djsL7Dh921m04eNDtSIzx\nNksCKebkk6FnT7ej8L5mzeCBB+q2HKExfmTVQcYYkyasOshnnn8epk93OwpvUYVPPrGeVMbUVo1J\nQEQmicgOEcmpZN9DIlIiIidFlfUTkQUiskJElolIk3D5uSKSIyJrReT5+P41/Omii+D8892OwlsK\nC+Gll2xabmNqq8bqIBEZDBwApqhqv6jyrsBE4HTgPFXdKyINgSXALaq6QkTaASFVVRFZCNynqotE\nZCbwO1WdXcU1rTqojlStG6QxfpeQ6iBVnQcUVLLrt8AjFcouBZap6orwawvCCaAT0FpVF4WPmwJc\nW5dATdVU4brrYO1atyNxl/1uMKbuYmoTEJGrgS2qurzCrt7h/bNE5GsRKU0SXYD8qOPyw2UmDkRg\nzBj47nfdjsQ927Y56wWXlLgdiTGppc4jhkWkOTACuKSK8w0CzgeOAB+LyNfAvrpeJztqwpxAIEDA\nZk6r1llnRZ4fP+6MlPWTzp3hzTedieKM8YtgMEiwnvPN16qLqIh0B6apaj8RORuYAxwCBOgKbAUG\nABcCl6vqneHXjQQOA68Dc1W1T7j8JmCIqt5TxfWsTSBGe/bAJZfAl19CkyZuR2OMSaZEdhGV8ANV\nXaGqnVS1p6r2wKna+Z6q7gRmA31FpJmINAKGACtVdTtQKCIDRESA24H36hKoqZ327WHmTP8kgEOH\nYNIkaw8wJla16SI6FVgA9BaRzSJyZ4VDlEiCCAHjga9xegl9raqzwsfdC0wC1gLrospNnHXq5Pyp\n6sxAms4KCpzVwqxnlDGxsRHDaeyTT5w+83/7m9uRGGOSIZbqIEsCaUzVqS5Jx/lz0vnvZkysbNoI\nU45I5EsyFEqvqqGlS+Gaa9yOwpjUZ3cCPjF6NHToAD//uduRxM+hQ9CihdtRGOMdVh1kqlRS4twZ\nWAOqMenLqoNMlRo0iCSA5ctTd4K19evhuefcjsKY9GFJwIeefRZWr3Y7itg0awa9erkdhTHpw6qD\nTMoIBsFmDzGmalYdZOpE1RldnAr59tAhW0DHmESwJOBjBw86A8kOH3Y7kpp9/jnMnet2FMakH6sO\nMp71wgtOt9bSdRJGjYKsLOd5IGBVQ8ZUFEt1kM8mHDZV2bXL+aV9ww3uxfDii9C3Lwwa5Gx37gwD\nBsDNN0eOiZph3BgTB5YEDAD798OmTcm95quvOr19brzR2T7rLDj11Mj+669PbjzG+JFVB5mkefdd\np2rnscec7dWroWlT6Nmzdq+33kHGVM9GDJu4+PBDZzDZj35U99dGL3j/ySfwxhvw8svO9rffwrFj\n0L17/GI1xkRYF1ETF23bOo9S1a1ed+xY5HlODlx4YWT7ggvg6acj26eeagnAGK+xJGBO8G//Fmmc\nhfJJoKAg8nznTjjjjMg4gz594L2o9eJat44scGOM8SZLAqZaI0c6K3cBFBVBv35w5IizfcopTr1+\nafVP48bl7yCMMd5nvYNMpYJB57FlC0yZAh07OuVTpjg9eko1bepGdMaYeLGGYVOj7Gzrn29MKrCG\nYWOMMXViScDUyPrmG5O+rDrIGGPSREKqg0RkkojsEJGcSvY9JCIlInJShfJuIrJfRB6MKjtXRHJE\nZK2IPF+XII0xxiRGbaqDXgEuq1goIl2BS4DKZpx5DphZoexPwE9VtTfQW0ROOKc5UbC6kVo+Y+9F\nhL0XEfZe1E+NSUBV5wEFlez6LfBIxUIRuQbYCKyMKusEtFbVReGiKcC1sQTsN/YBj7D3IsLeiwh7\nL+onpoZhEbka2KKqyyuUtwR+CYwCouulugD5Udv54TJjjDEuqvNgMRFpDozAqQqqKBv4raoeEqlT\n24QxxhgX1Kp3kIh0B6apaj8RORuYAxzC+bXfFdgKDADeCW8DtAOKgSeBd4G5qtonfL6bgCGqek8V\n17OuQcYYE4NErSwm4QequgIomxZMRHKBc1W1APj3qPIsYL+qTghvF4rIAGARcDvwQrz+EsYYY2JT\nmy6iU4EFOD16NovInRUOUcrX/1flXmASsBZYp6qz6hqsMcaY+PLkYDFjjDHJ4alpI0TkchFZEx5Q\n9qjb8bhJRPJEZJmIfCMiX7kdTzJVNkBRRNqJyIci8i8RmS0ivpi0uor3IktE8kVkSfhxuZsxJouI\ndBWRT0RkpYgsF5H/DZf77rNRyXvxP+HyOn82PHMnICINcKqKLgK24bQd3KSqa1wNzCUishE4L9zW\n4isiMhg4AExR1X7hsmeBPar6m/APhHaq+pibcSZDFe9FaXvbeFeDS7LweKNOqrpURFoBi4FrgDvx\n2WejmvfiRur42fDSncAAnLaCTapaBLyJ85fyK8Fb/z5JU8UAxWuAV8PPX8Ungw2rGazpu84Tqrpd\nVZeGnx8AVuP0RvTdZ6OK96J07FXKTiXdBdgSte33AWUKfCQii0Tkv9wOxgNOUdUd4PwHAE5xOR63\n3SciS0Vkoh+qPyoSkUygP/Al0NHPn42o92JhuKhOnw0vJQFT3iBVPRf4EXBvuFrARHijHtMdE4Ce\nqtof2A74rVqoFc6YpPvDv4IrfhZ889mo5L2o82fDS0lgK9Atart0EJovqeq34T93Af/AqS7zsx0i\n0hHK6kN3uhyPa1R1V9Rc6y8DF7gZTzKJSCOcL72/qup74WJffjYqey9i+Wx4KQksAnqJSHcRaQLc\nBLzvckyuEJEW4QxfOh/TpcAKd6NKurIBimHvA/8v/PwO4L2KL0hj5d6L8BddqWH467PxF2CVqv4u\nqsyvn40T3otYPhue6R0EThdR4Hc4yWmSqv6fyyG5QkR64Pz6V5xR3a/76b0ID1AMAO2BHUAW8E/g\nbeA0nOnLb1DVkFsxJksV78WFOHXAJUAecHdpnXg6E5FBwGfAcpz/G4ozj9lXwFv46LNRzXtxM3X8\nbHgqCRhjjEkuL1UHGWOMSTJLAsYY42OWBIwxxscsCRhjjI9ZEjDGGB+zJGCMMT5mScAYY3zMkoAx\nxvjY/wdyTuxWQUax/wAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEACAYAAAC57G0KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4U2X2wPHvKaUIiAKiIIsWFXRwR2UcUak7isuMjuMu\nozO41J/LjOKGSp0HRMV1xsEZN1wQBRU3UGAQ4oICKjsVZGmBIpvQsBW6JOf3x03bAKVt0iT3Jjmf\n5+ljc3Nz39MYTt+e+y6iqhhjjEk9GW4HYIwxJj4swRtjTIqyBG+MMSnKErwxxqQoS/DGGJOiLMEb\nY0yKqjPBi8gDIrJAROaJyEgRaRI6fruI/CQi80XkiV3OXywiC0Xk3HgGb4wxZs8ya3tSRLKBfsBv\nVLVUREYBV4rICuBi4BhVLReR/UPndwOuALoBHYBJItJVVYNx/BmMMcbUoK4e/GagHGgmIplAM+AX\n4BZgiKqWA6jq+tD5lwDvqGq5qhYCS4Ae8QjcGGNM7WpN8Kq6EXgaWIGT2P2q+j+gK3C6iEwTEZ+I\nnBh6SXugKOwSRTg9eWOMMQlWa4IXkUOBu4BsnOS9t4hcg1PaaaWqJwP9gdG1XMbWQjDGGBfUWoMH\nTgS+VdUNACIyBjgFp2c+BkBVvxeRoIi0AVYBncJe3zF0bCciYknfGGOioKpS33PrqsEvBE4WkaYi\nIsDZQD7wEXAmgIh0BbJU9VfgE5ybsFki0hnoAszYQ5D2pcrAgQNdj8ErX/Ze2Hth70XtX5GqtQev\nqnNE5E3gByAIzAReCj39mojMA8qA60Pn54vI6NAvgQogV6OJyhhjTIPVVaJBVZ8Enqzhqev2cP5j\nwGMNjMsYY0wD2UxWl+Xk5LgdgmfYe1HN3otq9l5ET9yooIiIVW6MMSZCIoLG8CarMcaYJGUJ3hhj\nUpQleGOMSVGW4I0xJkVZgjfGmBRlCd4YY1KUJXhjjElRluCNMSZFWYI3xpgUZQnepBRfoc/tEIzx\nDEvwJqVYgjemmiV4kzIK/YVRrZltTKqqc7lgY7zOV+hj0rJJPPvds5RUlODsTQM52TnkZOe4G5wx\nLrLVJE3K+LXkV16Y8QJ5OXluh2JMXNhqkiZttWnWxu0QjPEUS/Am6QU1yIaSDQBMWDqBWatnuRyR\nMd5gCd4kvYLiAi4YeQEA713+Hse2O9bliIzxBqvBm5SgqlU3V41JVVaDN2kpPLmXB8rZWrbVxWiM\n8QZL8CapbSjZwLy183Y69uAXDzJq/iiXIjLGO6xEY5Latyu/5eOFH/PEOU9UHQtqkAyxvotJPZGW\naCzBG2NMkrAavDHUXLoxJt1YgjdJa9bqWUxdMbXm59bMYsxPYxIckTHeYmvRmKS1cftGNpVuqvG5\nsw85m7MPOTvBERnjLVaDN8aYJBHzGryIPCAiC0RknoiMFJEmYc/dLSJBEWm9y/mLRWShiJwb+Y9g\nTGwUby/mtVmvuR2GMa6pNcGLSDbQD+iuqkcDjYArQ891As4Bloed3w24AugG9AaGidh4NRN7b815\ni6+Xf13rOVmNslhWvMzWiDdpq67kuxkoB5qJSCbQDFgVeu4Z4N5dzr8EeEdVy1W1EFgC9IhduMY4\nDtr3oDpXj2ye1ZxBZw6yJQxM2qr1JquqbhSRp4EVwHZggqpOEpFLgCJVnbvLP572wLSwx0VAhxjH\nbAy9snu5HYIxnldXieZQ4C4gGyd57y0i1wMPAAPDT63lMvb3sXGNqnLzpzezpXSL26EYk3B1DZM8\nEfhWVTcAiMgY4AachD8n1HvvCPwoIr/FKd90Cnt9R6pLOjvJy8ur+j4nJ4ecnJxo4jdpKHdcLv26\n9+P4A4+v81wR4YIuF1iZxiQln8+Hz+eL+vW1DpMUkWOBt4GTgB3A68AMVf132DkFwAmhck43YCRO\n3b0DMAk4bNcxkTZM0jTE3LVz6dyyMy2atHA7FGMSKtJhknXV4OeIyJvAD0AQmAm8tOtpYefni8ho\nIB+oAHItk5tYO6btMW6HYExSsIlOJqlEu1Lk38b/jbMOOYsLu14Yh6iMSQxbTdKkLFWl27Bu+Pr6\naLt324heW+gvpN3e7dgrc684RWdM/FmCNylt4/aNtG7auu4TjUlBluCN2QNVZXvFdpo1buZ2KMZE\nxdaDNylr7da1DXr9CzNeYPBXg2MUjTHeZz14kxQ2l27mpJdPIj83n0YZjaK6RnmgnMyMTBsTb5KW\nlWhMylJVS84mrVmJxqSsWCT37eXbmb9ufgyiMcb7LMEbzyspL+G7ld/F5FpLNi5h6LdDY3ItY7zO\nSjTG8xb9uohnpz3Lfy78j9uhGOOqpKrB+/1+pk6dSp8+fRIegzHGJJukqcH7/X4GDBhAz5493QrB\npKmyQJlt5WfSgmsJfsCAAQwePJiWLVu6FYJJAj9v+JnPFn8W02tmZmQyZ80cdlTsiOl1jfEa10o0\nBQUFZGdnJ7xtk1x+/OVH5q+bT9/j+rodijGuS5oafG5urvXgjTEmAklTgx88eDADBgzA7/e7FYJJ\nc4O+GsRy/3K3wzAmblxL8C1btmTw4MFMnTrVrRCMx3288GM+Xvhx3K5/TNtjaJLZJG7XN8ZtNg7e\neNbM1TNRVU5of4LboRjjCUlTg7cEb4wxkUmaGrwxXvD8tOcZPmu422EYExfWgzee9OAXD3JG9hmc\nc+g5cW2n0F9Ii6wW7Ndsv7i2Y0wsWInGpISlG5ey71770qZZG7dDMcYzLMEbE4WyQBlZjbLcDsOY\nWlkN3iS9oAYT2t7Yn8fy54/+nNA2jUkE68Ebzzl9+Om8cMELHNP2mIS0VxYoI0MyyMzITEh7xkTL\nSjQm6W0p3UKzxs2i3nvVmFRlJRqT9Fo0aZHw5B4IBlj066KEtmlMvFmCN57yy5ZfEt7muHHjWLZ6\nGf0+7UflX5Z+v59x48YlPBZjYskSvPGMQDDAWW+exaYdmxLabs+ePXnusef45A+fICK2GY1JGVaD\nN56iqojUu8QYM5VJvX///gwdOtSWsjaeFPObrCLyAHAtEATmATcAg4ALgTJgKXCDqm4KO/9GIADc\noaoTa7imJXjjOQUFBRxyyCH8vORnuhzaxe1wjNlNTG+yikg20A/orqpHA42AK4EJwJGqeizwM/BA\n6PxuwBVAN6A3MExErAxk9mjcuHH4/X6CGmTSsklUbsae6Pq33+/nqaee4i+v/4XHnnjM9ikwKaGu\n5LsZKAeaiUgm0AxYpaqTVKtmo0wHOoa+vwR4R1XLVbUQWAL0iH3YJlX07NmTAQMGsPSXpbw26zU2\nbdqU8Pp3ZXlm8ODBvNL3FZ598lnbjMakBlWt9Qu4CdgCrAPequH5T4GrQ9//C7gm7LlXgMtqeI0a\nU6m4uFhzc3O1oKBAc3Nztbi4OKHtjx07drc2i4uLdezYsQmNw5i6hHJnnXm78qvWqXsicihwF5AN\nbALeE5FrVPXt0PMDgDJVHVnb75CaDubl5VV9n5OTQ05OTm2hmBTWsmVL+vfvT+fOnSkoKEj4zc0+\nffrs9Pj12a9zbNtjdztuTKL5fD58Pl/Ur6/1JquIXAGco6p/DT2+DjhZVW8TkT/j1OfPUtUdoefv\nB1DVx0OPxwMDVXX6LtfV2tqtD1+hj5zsnAZdw3jDwpULub3/7bz8+MueGMHy2eLPOLTVoRze5nDX\nYjCmJrGeyboQOFlEmoozdu1sIF9EegP9gUsqk3vIJ8CVIpIlIp2BLsCMyH6E+vEV+uJxWZNgfr+f\nQXmDOO+m88jOzvbEZuwXdLnAkrtJCbWWaFR1joi8CfyAM0xyJvAysADIAv4XGrP8narmqmq+iIwG\n8oEKILfBXfUazF07l/Xb1sf6ssYFU6dO5YWnX6jqsYdvxm4lEmMaJqkmOvkKffgKfcxZM4ePFn3E\nwF4DAcjJzrFyjYmpMT+NoaC4gLtPudvtUIypkjarSeb58sjLyYtNQMY1vkIfBcUF3HD8DW6HspOi\nzUWUBco4pNUhbodiTJVIE3xSL4Ctqmwu3cy+e+3rdigmSu1btPfkOuwd9+lY90nGeFzS9uB9hT52\nVOxgxNwRjLh0RIwiM2ZngWDA1qU3npE2JRpwevBlgTKaZDaJQVTG7Gzu2rnc/vntfPnnL90OxRgg\nzRK8SW5Pf/s0B7Y4kKuPvtrtUGoUCAYoKS+hRZMWbodiDJCmOzqt3bqWqz64ikAw4HYoJgJXHX2V\np0c/NcpoZMk9RaTrvJmUSPAHND+Am7rfZLXSJNO+RXvat2jvdhh1Wu5f7nYIpoEswScxEeGMzme4\nHYaJQLL8tVUWKOPCdy6kpLzE7VCMiZj3xqc1gKoyesFoLv3NpTRu1NjtcEwtrvzgSvp178e5h57r\ndii1ymqUxbxb57kdholC5cTIskAZQ74ZUnU8nSZGptRNVlXlnon30L9nf9rt3S7m1zexU1pRCmAj\noEzcrN26ls2lm2me1ZxLR13Kd3/5zpXtIGMpLW+yVhIRnj7vaUvuSaBJZpOkSu6TCyZTvL3Y7TBM\nBH5c/SOjFoyifYv29D6sd9In92ikVIIPt6V0C+WBcrfDMDUo2lxEsg2TnVwwmVVbVrkdhonABV0u\n4KHTHwKoKsms3LQy6T57DZGyCf6O8XcwYekEt8NIiGQbIXDNmGtYWrzU7TAiMujMQRx1wFFuh2Hq\noaYb+DnZOagq1390fdJ99hoipWrw4coCZWQ1yoprG15hC68ZU23AFwM4tPWh3Hj8jbs9F9QgGZK8\n/dq0WmysNumS3E3iTFgygb0y96JXdi+3QzG1ePC0BwlqsMbnwpN7sif7+kjZBF9pzE9jKPQX8vff\n/d3tUGKqcgjYph2beG76c1XHvT4EbNKySfQ6uFdSDmNt3KhxUsadbppnNa/znOenPU9poJR7e96b\ngIjck7Ilmkqpvq73zxt+5u8T/s7Yq8e6HUqdSitKueqDqxh9+egalwj2+cD2XjfReunHl+h1cK96\nbbe4cftGmjRqUq9fBl6S1sMka9Jxn44pl9xXbV7FhSMvJBAM0HW/rpzY/kS3Q6qXJplNGHPFmD2u\n/96AzeONoWlmU/Zpsk+9zm3dtHXSJfdopHyCr7ShZAOfLPrE7TBion2L9gw6c1DV2juVJZn3899n\nSsEUFyNLfdOKpjFwykC3wzA1uO7Y6ziwxYERvWblppXcPeHulB06mfI1+Erbyrfx/arvufjwi90O\nJWqVI4NEhOPaHVd1vDLB799sf1o1beVSdLXbVraN4bOH8389/q/q2E8/weTJsH497NgBTzxRfX5O\njjfLNYe2OjSpP0OpaPGGxRzW+rCoJjK13bstpx50ahyi8oaUr8GnirJAGSe9fBJT+k6hddPWbocT\nsbVb1/LmnLe4OvseOnRwjk2aBGvWwLXXwrp1cPHFMG2au3Ga5BLUIGe9eRYj/jCCDvt0cDucuLMa\nfC3GjRuH3+9nQ8mGqmN+v59x48a5GFX9ZDXKqndyV1Xu/PxOlm70zoSOtnu35Ywm95CbW33s7LOd\n5A5wwAHQu7c7sUXDOijekCEZTL5+coOTu6ryfv77bC/fHqPIvCGtEnzPnj259/57OXXYqWwr24bf\n72fAgAH07NnT7dD2aNXmVVXJpL49dxGhT9c+rq+1XlICxxwDZWXO4xNOgI8/3vP5XizJ1OTXkl85\n6sWjLMl7RKzWmJm5eibrS9bH5FqeoaoJ/3KadUdxcbHecustWlBQoLm5uVpcXOxaLPXR5+0+Omv1\nLLfDqLeHH1Zdvbr6cUGB6pw1c/SJb56o1+s/+ED1H/+IT2yxtGbLGrdDSGvF24v19OGna2lFqduh\nJFQod9Y716ZlDb6wsJDOnTtTUFBAdna2a3HURyAYaNBOVRu3b+T6D6/ngz99EJfVG2fOhNatofJt\nHDMGTjsN9t+/+pxVm1ex8NeFnHXIWXVeb80aqKiAjh1jHqpJMfnr8+m2f7eYX3db2Ta2V2ynTbM2\nMb92Q1kNvg5+v5+hQ4dSUFDA+bnnM22J9+7qzV83n19LfgVo8DaErfZqxSO9HolZcg8Gwe+vfvzt\nt7BkSfXjSy/dObkDdNinQ72SO0C7dsmT3NdtW2dlGhfFI7kDvDzzZUbMHRGXaydcJN39WH3hUomm\nuLh4p7LM5PzJevOtN3uuTDPk6yE67udxcbl2MBhs0OtffVX17rtjFEwtiopUN2+OfzsNceJLJ2pB\ncYHbYaQV/3a/vjbztbi20dB/I/GElWj2bNy4cfTs2ZOWLVtWHfP7/UydOpU+ffokPJ5E+7LwS4bP\nHs7rv399p+O1LRGwcCEMHAijRjmPAwFoFMEfFa/Pfp2N2zdGvBZQbi5cdhmcVb+OvytUNS03kXDT\ncv9y3s9/n7tPuTsh7TW0RBprkZZo6tPbfgBYAMwDRgJNgNbA/4CfgYlAy13OXwwsBM7dwzXj/6su\nAt8s/0bnr53vagxz1szRiUsmxrWN8kC5Lvcv3+34wIHV3+/YofrQQ6qVnZjSUtUFC6Jvc0PJBi0s\nLoz+Asa45JV3X9Hf/uu3O/Xoi4uLdezYsa7FRIQ9+Fpr8CKSDfQDuqvq0UAj4ErgfuB/qtoV+CL0\nGBHpBlwBdAN6A8NEvL8e5/JNy1mzdU3C2qscjx/ul3W/MHni5Li2m5mRyUH7HgRAeaC8aknVoiLY\nts05JysL2rSB0tLqx90aUOps3bQ1B7c8uCFhe9rctXP5ZcsvboeR8nZU7GBz6eaEtnnZeZdxxJwj\n2LRpE0BSDKveTW3ZH6envghohbOswafAOTi987ahc9oBC7W6935f2OvHAyfXcN2E/Lbzql3vBez6\nOBHOvOtKPee+p/SRR1RBNTdX9b77ivWxx2LXOykPlDfo9RUVqn/7m2pJSYwCioMhXw/RL5Z94XYY\nKe+D/A/0lk9vSXi7lf82vTKsmgh78PUp0dwEbAHWAW+FjhWHPS+Vj4F/AdeEPfcKcFkN10zEexGx\nQDCg67etT0hbxcXFeuUNV+r/vf1/rnxwVqxZUXWDeeDA+PySuf2z23X4rOENusYbb6hu2RKbeEzy\nGDt27G6fxfUb1rtSHlm2bJkC+s2cbxLe9q4iTfC13mQVkUNDvfbTgE3Ae8AHwL9UtVXYeRtVtbWI\n/AuYpqpvh46/AnymqmN2ua4OHFi9Il9OTg45HpjG+PHCj/ls8Wf896L/JqS9uYvmcuwRx7oyHn/U\nKOjY0c/IkQMINr6ZjPL/Mnjw4J1uQDdUIBigLFBG08ZNY3ZNkx4qyyGVn8ldHyc6jh6X92Dqu1N5\n8vEnE9q+z+fDF7aO9qOPPhq7m6w49fRXwh5fB/wb+AloFzp2INUlmvuB+8POHw/8tobrxvn3XHSC\nwaBWBCoS0o7bf/q9955z87SydzL++/EJbT9S27e7HcGe/bDqB/188eduh5FyiouL9fQ/nq7/mvAv\nV/6NeKGUuitiWaIBjgXmA01xSjFvALcBTxKqtYeS+uOh77sBs4EsoDOwlNCKlZoECT4R1m5dq6cN\nO01vufUW1z84le0uXLww5u2v3LSywTX4SosWqfboEZNLxcW0ldP0w58+dDuMlPTV7K8U0IKCgoS3\nXVOZ6JtF3+gzbzyT8FgqxTTBO9fjXqqHSb4BNMa5+TqJmodJPggswbkRe94erpmgtyM6Kzet1D+8\n+wcNBANxuf6wt4ft9sFJxPCrqVNVhw2rbq+m3smcwjkxaevqD67Wrwq/ism1VFW3bo3ZpUyScPuv\n3Jp8uuhTfW/Be661H2mCT6uJTvWlqnz/y/f06NAjZtfcXr7d9Vr0ihWwdCmccUbNk74KVxdy7mPn\nMu/ZeXFZt8aY+ho7dyxj/j2GZ554xtUavNdEOtHJEnwCVAQrOPGlE5l43UQOaH6A2+HUKqhBMjw6\ndWHRItiwAU45xe1Idrd041Je/OFFnjr3KbdDSQnXPn4tN/3+Jk4/4vSqY16ada6qFPgLEr7fsy02\nFkOBYIBXZ75KRbCiQdfJzMjkqxu+ciW5//ILXHeds0hYfVQm9x0VO1iwbkFUbU4umExJeUlUr63N\nypU7L2zmJe32bsdZnT28rkKSGXH/iJ2SO0DLli09kdwBVmxawV8++UvVZEGvsgRfiwzJoMBfwKYd\nm6J6/XL/8qoPQH13e4+1tm3hL3+BjAj/T89cPZNh3w+LuD1V5dVZr1IWKIv4tXU5+2y4/vqYXzYm\nmmc15/wu57sdRtJLlh2VDm55MJOvn+zZv3YrWYkmjv703p+455R7YlrLN97nK/RVbYQeiVgvhhdt\nHG5RVU56+SQ++NMHSbW8RUWwgsyMzIS0ZSWaOPm15NeISzWj/jjKleQeDML55ztrzMRC/vp8Cv2F\nsblYDNxzD4wf73YUu6sIVnDMi8cwcenEqF7fs2dPBgwYULVOUUPXPvEV+qJ6nVtEhCl9pyRVcgfo\nPaJ31OXMeLMEX093jb+LLwu/rPO8+evms2rzKiB2e0VGKiMDnnoKOsRok/lvVnzDzNUz6zwvqEGG\nTh3a4HsWdenXD3r1imsTUcnMyOSTqz6hcUZjdlTsYOWmlVXP1efxFtnC4MGDGTBgAIuWLOLO/ndW\njRqJ9HqxEDaBMmFaNGmR+EYb6O1L3+bIA450O4waWYKvpzd+/0a9diWaUjCFH1f/mICIdhcIVH9/\n5JEQq98vN51wE5f+5tI6z9tevp0dFTvi/ufq4YdDU4+tfuAr9JHny+P12a/zj6/+wZ2f38l5I86r\n6kX/tP4n/jbhb1Xn7+lxy5Yt6d+/P0d0OYJ1x66rKtfU9/WVcfT9sC+Pfvkoeb488nx5UfXmE5Xg\nd1Ts4LZxt7GjYkdiGoyxtnu3dTuEPYtk0HysvvD4RKdkddttqmPGxLeNkXNHqn+7P76N1NO8eW5H\nULOBUwZG/dpYTe4pqyjT2z+7verxph2bInp9RYXqHXdE1XTESitK9d157yamsTgakz9GX/nxlbi2\nQSzXgze7e2vOWzzz3TM7HZu7di4fL/zYpYiqDRwIF14Y3zaWFi9lU2l0o4piKRCA22+H9evdjiR2\nwifzZGdnV5Vrdt07oD4aN2pM66atqx7f8PENTC6oe78Bnw/y8pzRSv/8p/N9Xl58e/NZjbK44qgr\n4tdAghx1wFGc0sljkzQi+W0Qqy+SuAdftKlIV29ZraqqUwqmqKrqj7/86Nr05WDQG+ulr9y0Uu+Z\ncI/bYXhC5eciUjWtfdKQJSzC4yirKKtaeiMQDOj0oul1vv7hh6Nqtt7KA+U6o2hGfBtJMVgPPr46\n7NOBdnu3A6pHKXQ/sDt/7PZHV+IZPRr69098uyXlJTz29WNVN1SbNW7GmZ3PTHwgHhTt0MQ+ffrs\nNg2/IZN7wuNo3Khx1Zjtos1FDP12aGVna48q504UF0fVfJ2WFS/j+enP1xlHstlSuoWR80a6HQZg\nN1mjtty/nI8WfuR2GFx+OTz+eOLbbSSNaNa4WdXjuWvnujLRZ8UKp4Rg6u+gfQ/ivcvfqxrlNblg\nctUoqQED4KPQxzonB779Fvr2jU8cXffryohLR6TcxuUVwQrmrJnjiVmuiRmdn0J8hT58hT62lm1l\nzto55PnyAKe3lMhJJevWwQEHOL2svfdOWLNVmmQ24a6T76p67Nakmv33h8MOS3izKWVz6WYaZzQG\noGvXcRx3XE+gJTk5oAqvvOJn3LjYrQGjqijq+Vmg0WrVtBVPnPOE22E4IqnnxOqLJK7Bh2vIaImG\nWL7cWR89EJ/VjCM2Jn+MHjXsKLfDMDGwfsN6Pbz34bpy7UpVjc9eBR/+9KHmjs2N2fW8bPGGxTFd\ndhyrwae+gw6CqVMjX18m1irHXM9YNYP56+Y3aMx1Q6lCSezXN0sbzz7rrNTZsmVLBv5jIEMeHUJh\nYSEPPvgggwcPZuPGljz0UGzauqjrRTzc6+HYXMzj7pl4D/nr811r39aiaYBElyUWLYKuXWM3gSmW\n8nx55OXkudb+q6/CwoUwdKhrISStYNBJ8LfeCs1Ct1UKCwvp3LkzQ8cNpbhJMQN+N5jx4+HSuue7\npSSfz7knESlVrbrHEIt8YWvRJFAik3swCLm5zvK/ZnfXXuvOzeZUkJEBd99dndz9fj9Dhw6loKCA\npWOX0vfwvjRr5iT3ddvWRd3OhCUT+GLZFzGKOrGinQdQmdxV1ZWf3RJ8ksjIgEmTYre+TKy5vWph\nkybQqJGrISQdVZg7d+dju062GvLYEJ4f8nzVZKvLRl3GZ9N/jqq9vTL3Yq/MvRoadlKasHSCKxME\nrUTjcfPmQadOkMa7lEVk/HhnHZ5OndyOxPuWLYO//x0+/LC67FfXksUFhQFuvaURn38O28q3MnvN\nbE496FSXfoL48vlgyhTnvXn0UWemODilmvqWaypH3QE8+uWjDOzlXCTaUXe2ZV+KycuDnj3hnHPc\njiQ5DBsGv/0tnHCC25Gkvrlr5/LmnDfr3KZwuX85HfbpkLA102Pp0kuduQGfftrw+RaxuE9lNfgU\nk5dnyT0SubmW3OtSUVH/LRxrc0zbY3ZK7u/Me2e3ddF9hT6GfDMkaWvvzz8Pxx/vdhTRswTvQUVF\nzjBIY+LhtdfgkUcado3166FPH+eXRbisRlk7PfYV+nixz4ucd9h5DWvQJZ06Ofe/ohlBsys37lNZ\ngvegZctgZt37a5g9CAScDUF+/dXtSLzpxhudXbEaok0bpy6dGVZ1ueroq+iyXxcANpRs4LLRl+00\nTDBZ+P3OSqXhv7ySNcFbDd6kpAULoFs3b84ZSHW+Qh9fLPuCVVtWMXz28AbfWEy0HTtg7Fj4ozvr\nB9bKbrImqa1b4c03nckmlpRMPAwa5OwXcNxxsbtmRQVMmOCUa2ri9gS4VGM3WZNUaSls3ux2FKml\nogLmz3c7Cu84+WQ4OMb7WZeXO0tW70jO3fZ2smQJ/PCD21HEliV4l1XOkNtvP7j/fuu9x9Ly5fBw\neix5Ui9nnw2tWsX2mk2bwhtvwF57mL+UDCWZSkuXwuzZbkcRW1aicVEwCGecAWPGOAnemHj46CO4\n6KL4z/QNBGw2cbzFtEQjIoeLyKywr00icqeI9BCR70PHvheRk8Je84CILBaRhSJybkN+mFQn4sxQ\nbd7c7UjGJjS5AAAPHElEQVRMqiopcW4YlpbGt53SUqe2v8n97XojVlTkLNuQiurdgxeRDGAV8Fvg\nTWCIqk4QkfOBe1X1DBHpBowETgI6AJOArqo7b22S7j14n6+6NBPtFGhTf198AatWORtJm/hZswba\ntXM7ishdfLEzobB7d7cjqVukPfhI5g6fDSxR1RUishrYN3S8JU7iB7gEeEdVy4FCEVkC9ACmRdBO\nysvJgS5doH1757FtORdfHTpUr5SYLlSdvVRbt05cm8mY3MEpYbm9t0K8RPJjXQm8E/r+fuBpEVkB\nDAUeCB1vDxSFvaYIpydvdnH11c5NHRN/RxwBv/ud21Ek1nffwQ03JL7dQMBZW76sLPFtR6pyuYZU\nTe5Qzx68iGQBFwH3hQ69Ctyhqh+KyOXAa8CeVkypsRaTF9ZtzcnJISfNahM+n1ODT7Mf21Wlpc4/\n5saN3Y4k/k45Bd5/P/HtZmQ4yX3bNsjKqvt8t6xeDX/4g7MkiJdvDPt8PnzRLkZPPWvwInIJcKuq\n9g493qyq+4S+F8CvqvuKyP0Aqvp46LnxwEBVnb7L9dK6Bm/ccd11cNVVcMEFbkdivKCoCDp2dDuK\nyMRrotNVVJdnAJaISK/Q92cClTsAfAJcKSJZItIZ6ALMqG8w6WDKFPj6a7ejSE8vv5z6yX3oUBgx\nwu0oHKE9Qjwr2ZJ7NOos0YhIc5wbrP3CDt8E/FtEmgDbQ49R1XwRGQ3kAxVArnXVdxYI2GQmt+xp\nMk4qufZatyNwqMK558KoUdC5s9vRVBs3zlmErm9ftyNJDJvoZNJKIADDhzs3IL1ce00FZWXeq8Mv\nWeL8ZXHiiW5HEh1bi8bD7Hea+zIynOWYk3FCTm1eegnWrnU7ip15LbkDHHZY8ib3aFiCT5D8/NSv\n/yYDEXjsscSOD483VWehOi8mVIAHHnBuaLpp7FhnXkC6sQSfIL/5Dbz4ottRmFQk4mzgEeuFxGLl\nlFPcn2j23Xep91dbfVgN3qSlxYvhrrucm27JLD/f2djEpAerwXvQ7Nm7711p3HXooc6My2S2di3c\ncYdz4zgZLF2a+Bmuy5cntj2vsQQfZ6rOmuReuwGW7jIyoGtXt6NomLZtYdKk5BkN9OijiV1vfdUq\nuOaa6iUJ0pGVaExa8/thwwanR58sVJ2vVF5DJVZUU2veiZVojInAuHHw4YduRxGZ99937h+YmgWD\n1UOSUym5R8N68HH03nuw777OjD5jYiUQgI0bYf/93Y4kOvfdB+edB2eeGZ/rDxvmvD8PPRSf67sp\n0h68Jfg4mjbN2bPy2GPdjsQY75g/31m+IF47mZWWwtatqbkNpiV4Y6LwzDNw+unenuX4z39Cjx5w\n8sluR2LcYjV4D1BNjg0PTLXu3Z0diRqw9HbcHX00dOrkdhSxM3OmM9IlVu6915nfYKpZgo+DWbNs\nWYJkk5PjLB/r5QR/xhnO9oOpYsoUWLQodter/H9oqlmJJk42b4Z99nE7ChOp66+HAQPg8MPdjqTa\n55/DOedAZiQ7KJuUFM9Nt00ELLknD5+vuuf+1lvOol0dOzo9wvHj4cIL4dRTnefXrXMWKktUsi0v\nh3ffderuXl1rpqEaMq6/rMwZrXb11TYksiaW4GNswgQ47TT3F1cy9ZeTs/PeuGHbBbP//s6M0Uq3\n3Qa33+7ckAV45x2ndNKuXXxia9wY3ngjPtf2in/8w3mPb7kl8tdu3OiMyjE1sxp8DAWDzj94u8Ga\nOo48Etq0qX783nvVyR2cZXDD14K57LKd1z9ZsSL6tWK8vuVdrNx2G9x4Y3SvbdcOhgyx3vueWA3e\nmDA+3869+UjNmuWs7tikifO4e3eYOLH6l8Rzz8HNNzvzI2ozfLjTc/fyTV83bdzolHRatnQ7ksSy\nYZLGNEBDkjvA8cdXJ3dwhgJWJvdgENavr36+vNwZ117Zw1d1RpWoOn8FTJjQsFiSzTffwNSp9Tt3\nzBj497/jG08qsBp8jLzwAhx8MFx0kduRGK/KyIDBg3d+/Oqr1atB+v1w3XUwY4bzOPwXRTooKal/\nqeWvf7UtMOvDSjQx8tNPsNde3tpB3iSX8NE8jz4KAwc63+96EzidVVSk93BRW6rAmBSQl7fzaJ50\nEgzCtm3QosXuz511lrNkw5FHJj4uL7AafIIFAum516Mx8fLf/8KTT9b83MiRtkVhJKwH30DTpzvj\neJN9b0/jLQ0dzZPMysqcMoxtaLI7K9G4IN3rgsbE05gxzozi//7XxrvbUgUusORuTOx98w0sXAiF\nhc4EsnRP7tGwP4Ia4LXXYMsWt6MwJjUdeCB06eJ0oM47z+1okpP1PaMUCDi9i8aN3Y7EmNSz65DR\nSjZkNDK11uBF5HDg3bBDhwAPq+o/ReR2IBcIAONU9b7Qax4Abgwdv0NVJ9Zw3ZSqwRtj4iedh4zu\nKqY1eFVdBBwfunAGsAr4UETOAC4GjlHVchHZP3RON+AKoBvQAZgkIl1VNRjVT2OMMSZqkdTgzwaW\nqOpK4FZgiKqWA6jq+tA5lwDvqGq5qhYCS4AeMYzXEx56CD780O0ojEkPVpKJXiQJ/krgndD3XYDT\nRWSaiPhEpHKr4vZAUdhrinB68inlttucNd+NMfFnCT569brJKiJZwEXAfWGva6WqJ4vIScBonPp8\nTVKu2H7ggW5HYIwxdavvKJrzgR/DSjFFwBgAVf1eRIIi0ganRh++73vH0LHd5IXdNcnJySEnCX5N\nb9/uLPd60EFuR2KMSQc+nw9fAzYFqNdMVhF5F/hcVd8IPb4ZaK+qA0WkKzBJVQ8K3WQdiVN37wBM\nAg7bdchMso6i+e47GDbM2bfTGGMSLeZLFYhIc2A50FlVt4SONQZeA44DyoC7VdUXeu5BnGGSFcCd\nqrrbtgXJmuCNMcZNSbMWzSOPKCI2ccEYY+oraRJ8MvXgVWHQILjzTthnH7ejMcakq6RaD14VJk92\nM4L6qahwEvvee7sdiTHG1J+rCX7dOmdPyooKN6OoW+PGTu/d1qc2xiQTK9HUIRi0xG6M8YakKtGE\n27wZLr7YGWvuJbm5tiyBMSY5eaYHrwrTpsHvfpfwcGq1dauz0UDz5m5HYoxJdykzimbRIjj88AQF\nZIwxSSBpSzThSkvhr3+FjRvdi6G4GGbNcq99Y4xpKE8m+CZN4KuvoHVr92JYuBBGjXKvfWOMaSjP\nlmgqBYNwzz1w773Qrl2cAzPGGA9LiRJNOBHnxut++7kdiTHGJJekSPCXX169uXW86/KBAPTr54ye\nMcaYZOb5BB9OFS67DBYsiF8bwSCcd54NizTGJD/P1+B3VVYGWVkxDsgYY5JAytXgdxWe3F9/HQoL\nY3ftkpLYXcsYY9yWdAk+XFkZZNZ308F6uO02+Oij2F3PGGPclHQlmj2JRemmosKp81fe0DXGGC9J\n+RLNntx6K4wd27BrZGZacjfGpI6U6cEXFzubcjRqFPlri4qctW/OOiumIRljTEylbQ++Vavq5D5t\nWmQ3X3/5BfLz4xKWMca4Joa3KL1j3jzYsgWys+t3fo8ezpcxxqSSlCnR7ImqMxvWGGOSXdqWaPbk\n2WfhP/+p+bnt2+GCC7y3i5QxxsRCyvfgN2xw1pc54IDdnwsGYfp07+0iZYwxNUmZHZ3iYe1ap7ee\nnQ0+H+TkJDwEY4yJmpVoavHVVzB6tPP9p586PXhjjElVadWDD9e9Owwa5NTgjTEmGUTag0/JYZJ7\n4vM5X+Dstzp9OsyY4ZRqrFxjjEk1tSZ4ETkceDfs0CHAw6r6z9DzdwNDgTaqujF07AHgRiAA3KGq\nE+MReDR2TeR5eS4FYowxCVBrDV5VF6nq8ap6PHACUAJ8CCAinYBzgOWV54tIN+AKoBvQGxgmImlV\n54+Ur/JPCmPvRRh7L6rZexG9SJLv2cBSVV0ZevwMcO8u51wCvKOq5apaCCwBPDlH1CslGfvwVrP3\nopq9F9XsvYheJAn+SmAkgIhcAhSp6txdzmkPFIU9LgI6NCjCOPFKgjfGmHip101WEckCLgLuE5Fm\nwIM45ZmqU2p5ubvDZYwxJk3Va5hkqMd+q6r2FpGjgUk49XiAjsAq4LfADQCq+njodeOBgao6fZfr\nWdI3xpgoxHwmq4i8C3yuqm/U8FwBcIKqbgzdZB2JU3fvgPOL4DDXB70bY0waqrNEIyLNcW6w9tvD\nKVXJW1XzRWQ0kA9UALmW3I0xxh2uzGQ1xhgTfwkdoy4ivUVkoYgsFpH7Etm2F4lIoYjMFZFZIjLD\n7XgSRUReE5G1IjIv7FhrEfmfiPwsIhNFpKWbMSbKHt6LPBEpCn0uZolIbzdjTBQR6SQiU0RkgYjM\nF5E7QsfT7rNRy3sR0WcjYT14EWkELMIp96wCvgeuUtWfEhKAB4Xfv3A7lkQSkdOArcCbqnp06NiT\nwK+q+mTol38rVb3fzTgTYQ/vxUBgi6o+42pwCSYi7YB2qjpbRPYGfgR+jzN4I60+G7W8F38igs9G\nInvwPYAlqlqoquU4SyBcksD2vSrt9ptS1a+B4l0OXwxU3sR/A+fDnPL28F5Aen4u1qjq7ND3W4Gf\ncAZrpN1no5b3AiL4bCQywXcAVoY99uwkqARSYJKI/CAie7qJnS7aqura0PdrgbZuBuMBt4vIHBF5\nNR1KErsSkWzgeGA6af7ZCHsvpoUO1fuzkcgEb3dzd9cztM7P+cBtoT/X015o5FU6f15eBDoDxwGr\ngafdDSexQiWJD4A7VXVL+HPp9tkIvRfv47wXW4nws5HIBL8K6BT2uBM7L2uQdlR1dei/63EWcfPk\nuj0JsjZUd0REDgTWuRyPa1R1nYYAr5BGnwsRaYyT3N9S1Y9Ch9PysxH2XoyofC8i/WwkMsH/AHQR\nkezQ0gdXAJ8ksH1PEZFmItIi9H1z4FxgXu2vSmmfAH1D3/cFPqrl3JQWSmKV/kCafC5ERIBXgXxV\nfS7sqbT7bOzpvYj0s5HQcfAicj7wHNAIeFVVhySscY8Rkc6Ell7GmXD2drq8HyLyDtALaINTU30E\n+BgYDRwEFAJ/UlW/WzEmSg3vxUAgB+dPcAUKgJvDatApS0ROBb4C5lJdhnkAmEGafTb28F48CFxF\nBJ8Nm+hkjDEpyjbjMMaYFGUJ3hhjUpQleGOMSVGW4I0xJkVZgjfGmBRlCd4YY1KUJXhjjElRluCN\nMSZF/T834Xcr4UmVaAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -443,7 +441,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 21, "metadata": { "collapsed": false }, @@ -646,7 +644,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", - "version": "2.7.9" + "version": "2.7.10" } }, "nbformat": 4,