forked from scg-ailabs/FusionNet-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
67 lines (51 loc) · 2.67 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import tensorflow as tf
from FusionNet import FusionNet
import numpy as np
from ops import losses
from glob import glob
import cv2
import time
def train_with_cpu(flag):
with tf.Graph().as_default():
data = glob('./dataset/{}/train/*.pgm'.format(flag.dataset_name))
num_samples_per_epoch = len(data)
num_batches_per_epoch = num_samples_per_epoch // flag.batch_size
global_step = tf.get_variable('global_step', [],
initializer=tf.constant_initializer(0), trainable=False)
decay_steps = int(num_batches_per_epoch * flag.num_epochs_per_decay)
lr = tf.train.exponential_decay(flag.initial_learning_rate,
global_step,
decay_steps,
flag.learning_rate_decay_factor,
staircase=True)
input_placeholder = tf.placeholder(tf.float32,
[flag.batch_size, flag.image_size, flag.image_size*2, flag.channel_dim])
input_ = input_placeholder[:, :, :flag.image_size, :]
target_ = input_placeholder[:, :, flag.image_size:flag.image_size*2, :]
fusionNet = FusionNet()
output_ = fusionNet.inference(input_)
loss = losses.pixel_wise_l2_loss(output_, target_)
var_list = tf.trainable_variables()
optimizer = tf.train.AdamOptimizer(lr)
grads_and_vars = optimizer.compute_gradients(loss, var_list=var_list)
train_op = optimizer.apply_gradients(grads_and_vars, global_step)
print("opt complete")
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print("Learning start!!")
start = time.time()
for epoch in range(flag.total_epoch):
np.random.shuffle(data)
print("Shuffled")
for batch_idx in range(num_batches_per_epoch):
batch_files = data[batch_idx * flag.batch_size:(batch_idx + 1) * flag.batch_size]
batch_image = [cv2.imread(batch_file) for batch_file in batch_files]
batch_images = np.array(batch_image).astype(np.float32)
feed = {input_placeholder: batch_images}
print("Feeded")
sess.run(train_op, feed_dict=feed)
print("Epoch: %d[%d/%d], time: %d, loss: %f" % (epoch, batch_idx, num_batches_per_epoch, time.time() - start, sess.run(loss, feed)))
print("Epoch: %d, time: %d, loss: %f" % (epoch, time.time() - start, sess.run(loss)))
def train_with_gpu(flag):
pass