forked from yahiaetman/OpenGL-Examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ex31_light_multipass.cpp
380 lines (322 loc) · 16.6 KB
/
ex31_light_multipass.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#include <application.hpp>
#include <shader.hpp>
#include <utility>
#include <imgui-utils/utils.hpp>
#include <mesh/mesh.hpp>
#include <mesh/mesh-utils.hpp>
#include <texture/texture-utils.h>
#include <camera/camera.hpp>
#include <camera/controllers/fly_camera_controller.hpp>
#include <glm/gtx/euler_angles.hpp>
#include <json/json.hpp>
#include <fstream>
#include <unordered_map>
namespace glm {
template<length_t L, typename T, qualifier Q>
void from_json(const nlohmann::json& j, vec<L, T, Q>& v){
for(length_t index = 0; index < L; ++index)
v[index] = j[index].get<T>();
}
}
struct Material {
glm::vec3 diffuse, specular, ambient;
float shininess;
explicit Material(
const glm::vec3& diffuse = {0,0,0},
const glm::vec3& specular = {0,0,0},
const glm::vec3& ambient = {0, 0, 0},
float shininess = 1.0f
): diffuse(diffuse), specular(specular), ambient(ambient), shininess(shininess) {}
};
void from_json(const nlohmann::json& j, Material& m){
m.diffuse = j.value<glm::vec3>("diffuse", {0.0f, 0.0f, 0.0f});
m.specular = j.value<glm::vec3>("specular", {0.0f, 0.0f, 0.0f});
m.ambient = j.value<glm::vec3>("ambient", {0.0f, 0.0f, 0.0f});
m.shininess = j.value<float>("shininess", 1.0f);
}
struct Transform {
Material material;
glm::vec3 translation, rotation, scale;
std::optional<std::string> mesh;
std::unordered_map<std::string, std::shared_ptr<Transform>> children;
explicit Transform(
const Material& material = Material(),
const glm::vec3& translation = {0,0,0},
const glm::vec3& rotation = {0,0,0},
const glm::vec3& scale = {1,1,1},
std::optional<std::string> mesh = std::nullopt
): material(material), translation(translation), rotation(rotation), scale(scale), mesh(std::move(mesh)) {}
[[nodiscard]] glm::mat4 to_mat4() const {
return glm::translate(glm::mat4(1.0f), translation) *
glm::yawPitchRoll(rotation.y, rotation.x, rotation.z) *
glm::scale(glm::mat4(1.0f), scale);
}
};
enum class LightType {
DIRECTIONAL,
POINT,
SPOT
};
struct Light {
LightType type;
// We will use this to enable/disable the light. If it is disabled. we won't have a pass for it.
bool enabled;
glm::vec3 diffuse, specular, ambient;
glm::vec3 position; // Used for Point and Spot Lights only
glm::vec3 direction; // Used for Directional and Spot Lights only
struct {
float constant, linear, quadratic;
} attenuation; // Used for Point and Spot Lights only
struct {
float inner, outer;
} spot_angle; // Used for Spot Lights only
};
// This example demonstrates how to draw a scene with multiple lights where the shader receives only one light.
// Spoiler: We will use blending to additively accumulate the effect of each light.
class LightMultipassApplication : public our::Application {
// We will create a different shader program for each light type.
std::unordered_map<LightType, our::ShaderProgram> programs;
std::unordered_map<std::string, std::unique_ptr<our::Mesh>> meshes;
std::shared_ptr<Transform> root;
our::Camera camera;
our::FlyCameraController camera_controller;
std::vector<Light> lights;
our::WindowConfiguration getWindowConfiguration() override {
return { "Light", {1280, 720}, false };
}
void onInitialize() override {
// We will create a different shader program for each light type.
programs[LightType::DIRECTIONAL].create();
programs[LightType::DIRECTIONAL].attach("assets/shaders/ex29_light/light_transform.vert", GL_VERTEX_SHADER);
programs[LightType::DIRECTIONAL].attach("assets/shaders/ex29_light/directional_light.frag", GL_FRAGMENT_SHADER);
programs[LightType::DIRECTIONAL].link();
programs[LightType::POINT].create();
programs[LightType::POINT].attach("assets/shaders/ex29_light/light_transform.vert", GL_VERTEX_SHADER);
programs[LightType::POINT].attach("assets/shaders/ex29_light/point_light.frag", GL_FRAGMENT_SHADER);
programs[LightType::POINT].link();
programs[LightType::SPOT].create();
programs[LightType::SPOT].attach("assets/shaders/ex29_light/light_transform.vert", GL_VERTEX_SHADER);
programs[LightType::SPOT].attach("assets/shaders/ex29_light/spot_light.frag", GL_FRAGMENT_SHADER);
programs[LightType::SPOT].link();
meshes["suzanne"] = std::make_unique<our::Mesh>();
our::mesh_utils::loadOBJ(*(meshes["suzanne"]), "assets/models/Suzanne/Suzanne.obj");
meshes["plane"] = std::make_unique<our::Mesh>();
our::mesh_utils::Plane(*(meshes["plane"]), {1, 1}, false, {0, 0, 0}, {1, 1}, {0, 0}, {100, 100});
meshes["sphere"] = std::make_unique<our::Mesh>();
our::mesh_utils::Sphere(*(meshes["sphere"]), {32, 16}, false);
int width, height;
glfwGetFramebufferSize(window, &width, &height);
camera.setEyePosition({10, 10, 10});
camera.setTarget({0, 0, 0});
camera.setUp({0, 1, 0});
camera.setupPerspective(glm::pi<float>()/2, static_cast<float>(width)/height, 0.1f, 100.0f);
camera_controller.initialize(this, &camera);
camera_controller.setFieldOfViewSensitivity(0.05f );
std::ifstream file_in("assets/data/ex29_light/scene.json");
nlohmann::json json;
file_in >> json;
file_in.close();
root = loadNode(json);
Light light = {};
light.type = LightType::DIRECTIONAL;
light.enabled = true;
light.diffuse = {1,1,1};
light.specular = {1,1,1};
light.ambient = {0.1f, 0.1f, 0.1f};
light.direction = {-1, -1, -1};
light.position = {0, 1, 5};
light.attenuation = {0, 0, 1};
light.spot_angle = {glm::pi<float>()/4, glm::pi<float>()/2};
lights.push_back(light);
light.type = LightType::POINT;
lights.push_back(light);
light.type = LightType::SPOT;
light.direction = {0, 0, 1};
light.position = {0, 1, -2};
lights.push_back(light);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
glFrontFace(GL_CCW);
// We will use blending to combine the results of the different shaders together.
// The combination will be additive so we will GL_FUNC_ADD as our blend equation.
glBlendEquation(GL_FUNC_ADD);
// We are not going to put alpha in our considerations for simplicity.
// So to do basic addition, we will just multiply both the source and the destination by 1.
glBlendFunc(GL_ONE, GL_ONE);
glClearColor(0.88,0.65,0.15, 1);
}
std::shared_ptr<Transform> loadNode(const nlohmann::json& json){
auto node = std::make_shared<Transform>(
json.value<Material>("material", Material()),
json.value<glm::vec3>("translation", {0, 0, 0}),
json.value<glm::vec3>("rotation", {0, 0, 0}),
json.value<glm::vec3>("scale", {1, 1, 1})
);
if(json.contains("mesh")){
node->mesh = json["mesh"].get<std::string>();
}
if(json.contains("children")){
for(auto& [name, child]: json["children"].items()){
node->children[name] = loadNode(child);
}
}
return node;
}
void drawNode(const std::shared_ptr<Transform>& node, const glm::mat4& parent_transform_matrix, our::ShaderProgram& program){
glm::mat4 transform_matrix = parent_transform_matrix * node->to_mat4();
if(node->mesh.has_value()){
if(auto mesh_it = meshes.find(node->mesh.value()); mesh_it != meshes.end()) {
// For each model, we will send the model matrix, model inverse transpose and material properties.
program.set("object_to_world", transform_matrix);
program.set("object_to_world_inv_transpose", glm::inverse(transform_matrix), true);
program.set("material.diffuse", node->material.diffuse);
program.set("material.specular", node->material.specular);
program.set("material.ambient", node->material.ambient);
program.set("material.shininess", node->material.shininess);
mesh_it->second->draw();
}
}
for(auto& [name, child]: node->children){
drawNode(child, transform_matrix, program);
}
}
void onDraw(double deltaTime) override {
camera_controller.update(deltaTime);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
bool first_light = true;
for(auto& light : lights) {
if(!light.enabled) continue;
// If this is the first light we will draw, we should enable blending or it will be added to the background color instead of occluding it.
if(first_light){
glDisable(GL_BLEND);
first_light = false;
} else {
glEnable(GL_BLEND);
}
// For each light, we will pick the shader that supports it
auto &program = programs[light.type];
glUseProgram(program);
// From the camera, we will send the camera position and view-projection matrix.
program.set("camera_position", camera.getEyePosition());
program.set("view_projection", camera.getVPMatrix());
// Then we will send the light properties
program.set("light.diffuse", light.diffuse);
program.set("light.specular", light.specular);
program.set("light.ambient", light.ambient);
// Some properties are only available in some light types
switch (light.type) {
case LightType::DIRECTIONAL:
program.set("light.direction", glm::normalize(light.direction));
break;
case LightType::POINT:
program.set("light.position", light.position);
program.set("light.attenuation_constant", light.attenuation.constant);
program.set("light.attenuation_linear", light.attenuation.linear);
program.set("light.attenuation_quadratic", light.attenuation.quadratic);
break;
case LightType::SPOT:
program.set("light.position", light.position);
program.set("light.direction", glm::normalize(light.direction));
program.set("light.attenuation_constant", light.attenuation.constant);
program.set("light.attenuation_linear", light.attenuation.linear);
program.set("light.attenuation_quadratic", light.attenuation.quadratic);
program.set("light.inner_angle", light.spot_angle.inner);
program.set("light.outer_angle", light.spot_angle.outer);
break;
}
// Since we already sent the view-projection matrix already, we will only send the model matrices from the drawNode function.
// That's why we are now sending an identity matrix as the parent transform matrix.
drawNode(root, glm::mat4(1.0f), program);
}
}
void onDestroy() override {
for(auto& [type, program]: programs){
program.destroy();
}
programs.clear();
for(auto& [name, mesh]: meshes){
mesh->destroy();
}
meshes.clear();
}
void displayNodeGui(const std::shared_ptr<Transform>& node, const std::string& node_name){
if(ImGui::TreeNode(node_name.c_str())){
if(node->mesh.has_value()) {
our::PairIteratorCombo("Mesh", node->mesh.value(), meshes.begin(), meshes.end());
ImGui::ColorEdit3("Diffuse", glm::value_ptr(node->material.diffuse), ImGuiColorEditFlags_HDR);
ImGui::ColorEdit3("Specular", glm::value_ptr(node->material.specular), ImGuiColorEditFlags_HDR);
ImGui::ColorEdit3("Ambient", glm::value_ptr(node->material.ambient), ImGuiColorEditFlags_HDR);
ImGui::DragFloat("Shininess", &(node->material.shininess), 0.1f, glm::epsilon<float>(), 1000000.0f);
}
ImGui::DragFloat3("Translation", glm::value_ptr(node->translation), 0.1f);
ImGui::DragFloat3("Rotation", glm::value_ptr(node->rotation), 0.01f);
ImGui::DragFloat3("Scale", glm::value_ptr(node->scale), 0.1f);
for(auto& [name, child] : node->children){
displayNodeGui(child, name);
}
ImGui::TreePop();
}
}
void onImmediateGui(ImGuiIO &io) override {
static const std::unordered_map<LightType, const char*> light_type_names = {
{LightType::DIRECTIONAL, "Directional"},
{LightType::POINT, "Point"},
{LightType::SPOT, "Spot"}
};
ImGui::Begin("Light");
our::ReorderableList(lights.begin(), lights.end(),
[](size_t index, Light& light){
ImGui::Checkbox("Enabled", &light.enabled);
if(ImGui::BeginCombo("Type", light_type_names.at(light.type))){
for(auto& [type, name] : light_type_names){
bool selected = light.type == type;
if(ImGui::Selectable(name, selected))
light.type = type;
if(selected) ImGui::SetItemDefaultFocus();
}
ImGui::EndCombo();
}
ImGui::ColorEdit3("Diffuse", glm::value_ptr(light.diffuse), ImGuiColorEditFlags_HDR);
ImGui::ColorEdit3("Specular", glm::value_ptr(light.specular), ImGuiColorEditFlags_HDR);
ImGui::ColorEdit3("Ambient", glm::value_ptr(light.ambient), ImGuiColorEditFlags_HDR);
switch(light.type){
case LightType::DIRECTIONAL:
ImGui::DragFloat3("Direction", glm::value_ptr(light.direction), 0.1f);
break;
case LightType::POINT:
ImGui::DragFloat3("Position", glm::value_ptr(light.position), 0.1f);
ImGui::Separator();
ImGui::DragFloat("Constant Attenuation", &light.attenuation.constant, 0.1f);
ImGui::DragFloat("Linear Attenuation", &light.attenuation.linear, 0.1f);
ImGui::DragFloat("Quadratic Attenuation", &light.attenuation.quadratic, 0.1f);
break;
case LightType::SPOT:
ImGui::DragFloat3("Direction", glm::value_ptr(light.direction), 0.1f);
ImGui::DragFloat3("Position", glm::value_ptr(light.position), 0.1f);
ImGui::Separator();
ImGui::DragFloat("Constant Attenuation", &light.attenuation.constant, 0.1f);
ImGui::DragFloat("Linear Attenuation", &light.attenuation.linear, 0.1f);
ImGui::DragFloat("Quadratic Attenuation", &light.attenuation.quadratic, 0.1f);
ImGui::Separator();
ImGui::DragFloat("Inner Spot Angle", &light.spot_angle.inner, 0.1f, 0.0f, glm::two_pi<float>());
ImGui::DragFloat("Outer Spot Angle", &light.spot_angle.outer, 0.1f, 0.0f, glm::two_pi<float>());
break;
}
},
[this](size_t index){
lights.insert(lights.begin() + index, Light());
},
[this](size_t index){
lights.erase(lights.begin() + index);
});
ImGui::End();
ImGui::Begin("Scene");
displayNodeGui(root, "root");
ImGui::End();
}
};
int main(int argc, char** argv) {
return LightMultipassApplication().run();
}