forked from brain-networks/KSmodel_fMRIdynamics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect_RSSevents.m
40 lines (33 loc) · 1.13 KB
/
detect_RSSevents.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
function [pk_ts,pk_amp,numpk,pval,pcnt,zext_ts,pk_ts2,pk_amp2,numpk2] = detect_RSSevents(ts,R,offsets,pthr,zext)
N = size(ts,2);
lts = size(ts,1);
% compute ets and rss
ets = fcn_edgets(ts);
rssts = sum(ets.^2,2).^0.5;
% circshift null
pcnt = zeros(lts,1);
for r=1:R
tsr = zeros(lts,N);
for n=1:N
tsr(:,n) = circshift(ts(:,n),offsets(randi(length(offsets))));
end
etsr = fcn_edgets(tsr);
rsstsr = sum(etsr.^2,2).^0.5;
pcnt = pcnt+(rssts>max(rsstsr)); % '1' if rssts>all rsstsr values
end
% pval
pval = 1-pcnt./R;
% determine peaks as intersection of 'findpeaks' and 'pvals'
% findpeaks
[~, fp_ts] = findpeaks(rssts);
% intersection
pk_ts = intersect(find(pval<pthr),fp_ts);
pk_amp = rssts(pk_ts);
numpk = length(pk_ts);
% flag those 'events' that may be due to extreme z-scores (> abs(zthr))
zext_ts = union(find(sum(ts'>zext)),find(sum(ts'<-zext)));
mask1 = zeros(lts,1); mask2 = zeros(lts,1);
mask1(pk_ts) = 1; mask2(zext_ts) = 1;
pk_ts2 = find((mask1==1)&(mask2==0)); % pick events that are not due to extreme z-scores
pk_amp2 = rssts(pk_ts2);
numpk2 = length(pk_ts2);