-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_extractor.py
48 lines (38 loc) · 1.69 KB
/
test_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# -*- coding: UTF-8 -*-
"""
JPEG Implementation Forensics Based on Eigen-Algorithms
@author: Paolo Bestagini ([email protected])
@author: Luca Bondi ([email protected])
"""
import os
import unittest
import numpy as np
from PIL import Image
from jpeg_eigen import jpeg_recompress_pil, jpeg_feature
class TestExtractor(unittest.TestCase):
im_png_path = 'samples/raw.png'
im_ps_path = 'samples/photoshop.jpg'
im_ps_pil_path = 'samples/photoshop_pil.jpg'
im_pil_path = 'samples/pil.jpg'
def test_extract(self):
# double compression
if os.path.exists(self.im_ps_pil_path):
os.unlink(self.im_ps_pil_path)
jpeg_recompress_pil(self.im_ps_path, self.im_ps_pil_path, check=True)
self.assertTrue(os.path.exists(self.im_ps_pil_path))
# single compression
img_in = Image.open(self.im_ps_path)
qtables_in = img_in.quantization
if os.path.exists(self.im_pil_path):
os.unlink(self.im_pil_path)
jpeg_recompress_pil(self.im_png_path, self.im_pil_path, qtables_in=qtables_in, check=True)
self.assertTrue(os.path.exists(self.im_pil_path))
ps_features = jpeg_feature(self.im_ps_path)
pil_features = jpeg_feature(self.im_pil_path)
ps_pil_features = jpeg_feature(self.im_ps_pil_path)
ps_features_ref = np.load('samples/ps_features.npy')
pil_features_ref = np.load('samples/pil_features.npy')
ps_pil_features_ref = np.load('samples/ps_pil_features.npy')
self.assertTrue(np.allclose(ps_features_ref, ps_features))
self.assertTrue(np.allclose(pil_features_ref, pil_features))
self.assertTrue(np.allclose(ps_pil_features_ref, ps_pil_features))