forked from faif/python-patterns
-
Notifications
You must be signed in to change notification settings - Fork 0
/
graph_search.py
76 lines (66 loc) · 2.28 KB
/
graph_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
class GraphSearch:
"""Graph search emulation in python, from source
http://www.python.org/doc/essays/graphs/"""
def __init__(self, graph):
self.graph = graph
def find_path(self, start, end, path=[]):
self.start = start
self.end = end
self.path = path
self.path += [self.start]
if self.start == self.end:
return self.path
if not self.graph.has_key(self.start):
return None
for node in self.graph[self.start]:
if node not in self.path:
newpath = self.find_path(node, self.end, self.path)
if newpath:
return newpath
return None
def find_all_path(self, start, end, path=[]):
self.start = start
self.end = end
self.path = path
self.path += [self.start]
if self.start == self.end:
return [self.path]
if not self.graph.has_key(self.start):
return []
paths = []
for node in self.graph[self.start]:
if node not in self.path:
newpaths = self.find_all_path(node, self.end, self.path)
for newpath in newpaths:
paths.append(newpath)
return paths
def find_shortest_path(self, start, end, path=[]):
self.start = start
self.end = end
self.path = path
self.path += [self.start]
if self.start == self.end:
return self.path
if not self.graph.has_key(self.start):
return None
shortest = None
for node in self.graph[self.start]:
if node not in self.path:
newpath = self.find_shortest_path(node, self.end, self.path)
if newpath:
if not shortest or len(newpath) < len(shortest):
shortest = newpath
return shortest
#example of graph usage
graph = {'A': ['B', 'C'],
'B': ['C', 'D'],
'C': ['D'],
'D': ['C'],
'E': ['F'],
'F': ['C']
}
#inistialization of new graph search object
graph1 = GraphSearch(graph)
print graph1.find_path('A', 'D')
print graph1.find_all_path('A', 'D')
print graph1.find_shortest_path('A', 'D')