Skip to content

Latest commit

 

History

History
47 lines (34 loc) · 1.58 KB

File metadata and controls

47 lines (34 loc) · 1.58 KB

LLMs benchmarking sample

This sample script demonstrates how to benchmark an LLMs in OpenVINO GenAI. The script includes functionality for warm-up iterations, generating text, and calculating various performance metrics.

Download and convert the model and tokenizers

The --upgrade-strategy eager option is needed to ensure optimum-intel is upgraded to the latest version.

It's not required to install ../../requirements.txt for deployment if the model has already been exported.

pip install --upgrade-strategy eager -r ../../requirements.txt
optimum-cli export openvino --trust-remote-code --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0

Usage

benchmark_genai [OPTIONS]

Options

  • -m, --model: Path to the model and tokenizers base directory.
  • -p, --prompt (default: "The Sky is blue because"): The prompt to generate text.
  • -nw, --num_warmup (default: 1): Number of warmup iterations.
  • -mt, --max_new_tokens (default: 20): Number of warmup iterations.
  • -n, --num_iter (default: 3): Number of iterations.
  • -d, --device (default: "CPU"): Device to run the model on.

Output:

benchmark_genai -m TinyLlama-1.1B-Chat-v1.0 -n 10
Load time: 3405.69 ms
Generate time: 1430.77 ± 3.04 ms
Tokenization time: 0.51 ± 0.02 ms
Detokenization time: 0.37 ± 0.01 ms
TTFT: 81.60 ± 0.54 ms
TPOT: 71.52 ± 2.72 ms
Throughput tokens/s: 13.98 ± 0.53

For more information how performance metrics are calculated please follow performance-metrics tutorial.