diff --git a/docs/reference/search/retriever_examples.asciidoc b/docs/reference/search/retriever_examples.asciidoc index dfd6a08ddde42..2afd7d1cec075 100644 --- a/docs/reference/search/retriever_examples.asciidoc +++ b/docs/reference/search/retriever_examples.asciidoc @@ -6,8 +6,8 @@ To begin with, we'll set up the necessary services and have them in place for la [source,js] ---- -// Setup rerank task stored as `my-awesome-rerank-model` -PUT _inference/rerank/my-awesome-rerank-model +// Setup rerank task stored as `my-rerank-model` +PUT _inference/rerank/my-rerank-model { "service": "cohere", "service_settings": { @@ -234,7 +234,7 @@ GET retrievers_example/_search } }, "field": "text", - "inference_id": "my-awesome-rerank-model", + "inference_id": "my-rerank-model", "inference_text": "What are the state of the art applications of AI in information retrieval?" } }, @@ -247,7 +247,7 @@ GET retrievers_example/_search [discrete] === RRF with semantic reranker -For this example, we'll replace our semantic query with the `my-awesome-rerank-model` +For this example, we'll replace our semantic query with the `my-rerank-model` reranker we previously configured. Since this is a reranker, it needs an initial pool of documents to work with. In this case, we'll filter for documents about `ai` topics. @@ -282,7 +282,7 @@ GET /retrievers_example/_search } }, "field": "text", - "inference_id": "my-awesome-rerank-model", + "inference_id": "my-rerank-model", "inference_text": "Can I use generative AI to identify user intent and improve search relevance?" } } @@ -326,7 +326,7 @@ GET retrievers_example/_search }, "rank_window_size": 100, "field": "text", - "inference_id": "my-awesome-rerank-model", + "inference_id": "my-rerank-model", "inference_text": "What are the state of the art applications of AI in information retrieval?" } }, @@ -346,7 +346,7 @@ GET retrievers_example/_search Note that our example applies two reranking steps. First, we rerank the top 100 -documents from the `knn` search using the `my-awesome-rerank-model` reranker. Then we +documents from the `knn` search using the `my-rerank-model` reranker. Then we pick the top 10 results and rerank them using the more fine-grained `my-other-more-expensive-rerank-model`.