forked from StanfordLegion/task-bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtask_bench_core.py
190 lines (145 loc) · 5.83 KB
/
task_bench_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/usr/bin/env python
#
# Copyright 2020 Stanford University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from __future__ import absolute_import, division, print_function
import cffi
import dask
import numpy as np
import os
import subprocess
# Hack: This is in its own module to avoid having this get pickled, as
# the CFFI handles are (obviously) unpickleable. By default Dask uses
# cloudpickle to pickle tasks, which appears to do introspection on
# their ASTs to figure out what globals they capture. Fortunately
# cloudpickle does not also try to introspect the contents of locally
# imported modules....
root_dir = os.path.dirname(os.path.dirname(__file__))
core_header = subprocess.check_output(
[
"gcc", "-D", "__attribute__(x)=", "-E", "-P",
os.path.join(root_dir, "core/core_c.h")
]).decode("utf-8")
ffi = cffi.FFI()
ffi.cdef(core_header)
c = ffi.dlopen("libcore.so")
def init_client():
import argparse
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('-scheduler', required=False)
parser.add_argument('-expect-workers', type=int, default=0)
args, unknown = parser.parse_known_args()
if args.scheduler:
from dask.distributed import Client
client = Client(args.scheduler)
if args.expect_workers > 0:
while True:
num_workers = len(client.ncores())
if num_workers >= args.expect_workers:
break
print(
'Client waiting for workers (have %s expect %s)' %
(num_workers, args.expect_workers),
flush=True)
import time
time.sleep(5)
else:
client = None
return client
def encode_task_graph(graph):
return np.frombuffer(
ffi.buffer(ffi.addressof(graph), ffi.sizeof(graph)), dtype=np.ubyte)
def decode_task_graph(graph_array):
return ffi.cast("task_graph_t *", graph_array.ctypes.data)[0]
def app_create(args):
c_args = []
c_argv = ffi.new("char *[]", len(args) + 1)
for i, arg in enumerate(args):
c_args.append(ffi.new("char []", arg.encode('utf-8')))
c_argv[i] = c_args[-1]
c_argv[len(args)] = ffi.NULL
app = c.app_create(len(args), c_argv)
c.app_display(app)
return app
def app_task_graphs(app):
result = []
graphs = c.app_task_graphs(app)
for i in range(c.task_graph_list_num_task_graphs(graphs)):
result.append(c.task_graph_list_task_graph(graphs, i))
return result
def task_graph_dependencies(graph, timestep, point):
last_offset = c.task_graph_offset_at_timestep(graph, timestep - 1)
last_width = c.task_graph_width_at_timestep(graph, timestep - 1)
if timestep == 0:
last_offset, last_width = 0, 0
dset = c.task_graph_dependence_set_at_timestep(graph, timestep)
ilist = c.task_graph_dependencies(graph, dset, point)
for i in range(0, c.interval_list_num_intervals(ilist)):
interval = c.interval_list_interval(ilist, i)
for dep in range(interval.start, interval.end + 1):
if last_offset <= dep < last_offset + last_width:
yield dep
def execute_point_impl(graph_array, timestep, point, scratch, *inputs):
graph = decode_task_graph(graph_array)
input_ptrs = ffi.new(
"char *[]", [ffi.cast("char *", i.ctypes.data) for i in inputs])
input_sizes = ffi.new("size_t []", [i.shape[0] for i in inputs])
output = np.empty(graph.output_bytes_per_task, dtype=np.ubyte)
output_ptr = ffi.cast("char *", output.ctypes.data)
if scratch is not None:
scratch_ptr = ffi.cast("char *", scratch.ctypes.data)
scratch_size = scratch.shape[0]
else:
scratch_ptr = ffi.NULL
scratch_size = 0
c.task_graph_execute_point_scratch(
graph, timestep, point, output_ptr, output.shape[0], input_ptrs,
input_sizes, len(inputs), scratch_ptr, scratch_size)
return output
@dask.delayed(nout=2)
def execute_point_scratch(graph_array, timestep, point, scratch, *inputs):
return execute_point_impl(
graph_array, timestep, point, scratch, *inputs), scratch
@dask.delayed
def execute_point_no_scratch(graph_array, timestep, point, *inputs):
return execute_point_impl(graph_array, timestep, point, None, *inputs)
def init_scratch_direct(scratch_bytes):
scratch = np.empty(scratch_bytes, dtype=np.ubyte)
scratch_ptr = ffi.cast("char *", scratch.ctypes.data)
c.task_graph_prepare_scratch(scratch_ptr, scratch_bytes)
return scratch
@dask.delayed
def init_scratch_delayed(scratch_bytes):
return init_scratch_direct(scratch_bytes)
@dask.delayed
def join(*args):
pass
def splitter(value, idx):
return value[idx]
# Entry point for direct graph construction
def execute_point_direct(graph_array, timestep, point, scratch, *inputs):
if scratch is not None:
return execute_point_impl(
graph_array, timestep, point, scratch, *inputs), scratch
else:
return execute_point_impl(graph_array, timestep, point, None, *inputs)
# Entry points for dask.delayed
def execute_point_delayed(graph_array, timestep, point, scratch, *inputs):
if scratch is not None:
return execute_point_scratch(
graph_array, timestep, point, scratch, *inputs)
else:
return execute_point_no_scratch(
graph_array, timestep, point, *inputs), None