See the Long Callback section in the Dash documentation
- ----------------------------------------------------------------------------------
- This documentation describes code in a previous version of dash-labs (v0.4.0)
- and is included here for legacy purposes only.
-
- You can install v0.4.0 with:
- pip install dash-labs==0.4.0
- ----------------------------------------------------------------------------------
DashLabs introduces a new callback decorator called @long_callback
. This decorator is designed to make it easier to create callback functions that take a long time to run, without locking up the Dash app or timing out.
@long_callback
supports multiple backend executors. Two backends are currently implemented:
- A diskcache backend that runs callback logic in a separate process and stores the results to disk using the diskcache library. This is the easiest backend to use for local development.
- A Celery backend that runs callback logic in a celery worker and returns results to the Dash app through a Celery broker like RabbitMQ or Redis.
The @long_callback
decorator supports the same arguments as the normal @callback
decorator, but also includes support for 3 additional arguments that will be discussion below: running
, cancel
, and progress
.
In Dash Labs, the @long_callback
decorator is enabled using the LongCallback
plugin. To support multiple backends, the LongCallback
plugin is, itself, configured with either a DiskcacheCachingCallbackManager
or CeleryCallbackManager
object. Furthermore, in addition to the LongCallback
plugin, the FlexibleCallback
and HiddenComponents
plugins must be enabled as well. Here is an example of configuring an app to enable the @long_callback
decorator using the diskcache backend.
import dash
import dash_labs as dl
## Diskcache
import diskcache
cache = diskcache.Cache("./cache")
long_callback_manager = dl.plugins.DiskcacheCachingCallbackManager(cache)
app = dash.Dash(__name__, plugins=[
dl.plugins.FlexibleCallbacks(),
dl.plugins.HiddenComponents(),
dl.plugins.LongCallback(long_callback_manager)
])
This configuration requires the diskcache
package which can be installed with:
$ pip install diskcache
Additionally, on Windows the multiprocess
library is required as well.
$ pip install multiprocess
Here is a simple example of using the @long_callback
decorator to register a callback function that updates an html.P
element with the number of times that a button has been clicked. The callback uses time.sleep
to simulate a long-running operation.
import time
import dash
import dash_html_components as html
import dash_labs as dl
## Diskcache
import diskcache
cache = diskcache.Cache("./cache")
long_callback_manager = dl.plugins.DiskcacheCachingCallbackManager(cache)
app = dash.Dash(__name__, plugins=[
dl.plugins.FlexibleCallbacks(),
dl.plugins.HiddenComponents(),
dl.plugins.LongCallback(long_callback_manager)
])
app.layout = html.Div([
html.Div([
html.P(id="paragraph_id", children=["Button not clicked"])
]),
html.Button(id='button_id', children="Run Job!"),
])
@app.long_callback(
output=dl.Output("paragraph_id", "children"),
args=dl.Input("button_id", "n_clicks"),
)
def callback(n_clicks):
time.sleep(2.0)
return [f"Clicked {n_clicks} times"]
if __name__ == "__main__":
app.run_server(debug=True)
In the previous example, there is no visual indication that the long callback was running. It is also possible to click the "Run Job!" button multiple times before the original job has the chance to complete. This example addresses these shortcomings by disabling the button while the callback is running, and re-enabling it when the callback completes.
This is accomplished using the running
argument to @long_callback
. This argument accepts a list of 3-element tuples. The first element of each tuple should be an Output
dependency object referencing a property of a component in the app layout. The second elements is the values that the property should be set to while the callback is running, and the third element is the value the property should be set to when the callback completes.
This example uses running
to set the disabled
property of the button to True
while the callback is running, and False
when it completes.
import time
import dash
import dash_html_components as html
import dash_labs as dl
## Diskcache
import diskcache
cache = diskcache.Cache("./cache")
long_callback_manager = dl.plugins.DiskcacheCachingCallbackManager(cache)
app = dash.Dash(__name__, plugins=[
dl.plugins.FlexibleCallbacks(),
dl.plugins.HiddenComponents(),
dl.plugins.LongCallback(long_callback_manager)
])
app.layout = html.Div([
html.Div([
html.P(id="paragraph_id", children=["Button not clicked"])
]),
html.Button(id='button_id', children="Run Job!"),
])
@app.long_callback(
output=dl.Output("paragraph_id", "children"),
args=dl.Input("button_id", "n_clicks"),
running=[
(dl.Output("button_id", "disabled"), True, False),
],
)
def callback(n_clicks):
time.sleep(2.0)
return [f"Clicked {n_clicks} times"]
if __name__ == "__main__":
app.run_server(debug=True)
This example builds on the previous example, adding support for canceling a long-running callback using the cancel
argument to the @long_callback
decorator. The cancel
argument should be set to a list of Input
dependency objects that reference a property of a component in the app's layout. When the value of this property changes while a callback is running, the callback is canceled. Note that the value of the property is not significant, any change in value will result in the cancellation of the running job (if any).
import time
import dash
import dash_html_components as html
import dash_labs as dl
## Diskcache
import diskcache
cache = diskcache.Cache("./cache")
long_callback_manager = dl.plugins.DiskcacheCachingCallbackManager(cache)
app = dash.Dash(__name__, plugins=[
dl.plugins.FlexibleCallbacks(),
dl.plugins.HiddenComponents(),
dl.plugins.LongCallback(long_callback_manager)
])
app.layout = html.Div([
html.Div([
html.P(id="paragraph_id", children=["Button not clicked"])
]),
html.Button(id='button_id', children="Run Job!"),
html.Button(id='cancel_button_id', children="Cancel Running Job!"),
])
@app.long_callback(
output=dl.Output("paragraph_id", "children"),
args=dl.Input("button_id", "n_clicks"),
running=[
(dl.Output("button_id", "disabled"), True, False),
(dl.Output("cancel_button_id", "disabled"), False, True),
],
cancel=[dl.Input("cancel_button_id", "n_clicks")],
)
def callback(n_clicks):
time.sleep(2.0)
return [f"Clicked {n_clicks} times"]
if __name__ == "__main__":
app.run_server(debug=True)
This example uses the progress
argument to the @long_callback
decorator to update a progress bar while the callback is running. The progress
argument should be set to an Output
dependency grouping that references properties of components in the app's layout.
When a dependency grouping is assigned to the progress
argument of @long_callback
, the decorated function will be called with a new special argument as the first argument to the function. This special argument, named set_progress
in the example below, is a function handle that the decorated function should call in order to provide updates to the app on its current progress. The set_progress
function accepts a single argument, which correspond to the grouping of properties specified in the Output
dependency grouping passed to the progress
argument of @long_callback
.
import time
import dash
import dash_html_components as html
import dash_labs as dl
## Diskcache
import diskcache
cache = diskcache.Cache("./cache")
long_callback_manager = dl.plugins.DiskcacheCachingCallbackManager(cache)
app = dash.Dash(__name__, plugins=[
dl.plugins.FlexibleCallbacks(),
dl.plugins.HiddenComponents(),
dl.plugins.LongCallback(long_callback_manager)
])
app.layout = html.Div([
html.Div([
html.P(id="paragraph_id", children=["Button not clicked"]),
html.Progress(id="progress_bar"),
]),
html.Button(id='button_id', children="Run Job!"),
html.Button(id='cancel_button_id', children="Cancel Running Job!"),
])
@app.long_callback(
output=dl.Output("paragraph_id", "children"),
args=dl.Input("button_id", "n_clicks"),
running=[
(dl.Output("button_id", "disabled"), True, False),
(dl.Output("cancel_button_id", "disabled"), False, True),
(dl.Output("paragraph_id", "style"), {"visibility": "hidden"}, {"visibility": "visible"}),
(dl.Output("progress_bar", "style"), {"visibility": "visible"}, {"visibility": "hidden"}),
],
cancel=[dl.Input("cancel_button_id", "n_clicks")],
progress=dl.Output("progress_bar", ("value", "max")),
)
def callback(set_progress, n_clicks):
total = 10
for i in range(total):
time.sleep(0.5)
set_progress((str(i + 1), str(total)))
return [f"Clicked {n_clicks} times"]
if __name__ == "__main__":
app.run_server(debug=True)
The progress
argument to the @long_callback
decorator can be used to update arbitrary component properties. This example creates and updates a plotly bar graph to display the current calculation status. This example also uses the progress_default
argument to long_callback
to specify a grouping of values that should be assigned to the components specified by the progress
argument when the callback is not in progress. If progress_default
is not provided, all the dependency properties specified in progress
will be set to None
when the callback is not running. In this case, progress_default
is set to a figure with a zero width bar.
import time
import dash
import dash_html_components as html
import dash_core_components as dcc
import dash_labs as dl
from dash_labs.plugins import DiskcacheCachingCallbackManager
import plotly.graph_objects as go
## Diskcache
import diskcache
cache = diskcache.Cache("./cache")
long_callback_manager = DiskcacheCachingCallbackManager(cache)
def make_progress_graph(progress, total):
progress_graph = (
go.Figure(data=[go.Bar(x=[progress])])
.update_xaxes(range=[0, total])
.update_yaxes(
showticklabels=False,
)
.update_layout(height=100, margin=dict(t=20, b=40))
)
return progress_graph
app = dash.Dash(
__name__,
plugins=[
dl.plugins.FlexibleCallbacks(),
dl.plugins.HiddenComponents(),
dl.plugins.LongCallback(long_callback_manager),
],
)
app.layout = html.Div(
[
html.Div(
[
html.P(id="paragraph_id", children=["Button not clicked"]),
dcc.Graph(id="progress_bar_graph", figure=make_progress_graph(0, 10)),
]
),
html.Button(id="button_id", children="Run Job!"),
html.Button(id="cancel_button_id", children="Cancel Running Job!"),
]
)
@app.long_callback(
output=dl.Output("paragraph_id", "children"),
args=dl.Input("button_id", "n_clicks"),
running=[
(dl.Output("button_id", "disabled"), True, False),
(dl.Output("cancel_button_id", "disabled"), False, True),
(
dl.Output("paragraph_id", "style"),
{"visibility": "hidden"},
{"visibility": "visible"},
),
(
dl.Output("progress_bar_graph", "style"),
{"visibility": "visible"},
{"visibility": "hidden"},
),
],
cancel=[dl.Input("cancel_button_id", "n_clicks")],
progress=dl.Output("progress_bar_graph", "figure"),
progress_default=make_progress_graph(0, 10),
interval=1000,
)
def callback(set_progress, n_clicks):
total = 10
for i in range(total):
time.sleep(0.5)
set_progress(make_progress_graph(i, 10))
return [f"Clicked {n_clicks} times"]
if __name__ == "__main__":
app.run_server(debug=True)
The long_callback
decorator can optionally memoize callback function results through caching, and it provides a flexible API for configuring when cached results may be reused.
Note: The current caching configuration API is fairly low-level, and in the future we expect that it will be useful to provide several preconfigured caching profiles.
Here is a high-level description of how caching works in long_callback
. Conceptually, you can imagine a dictionary is associated with each decorated callback function. Each time the decorated function is called, the input arguments to the function (and potentially other information about the environment) are hashed to generate a key. The long_callback
decorator then checks the dictionary to see if there is already a value stored using this key. If so, the decorated function is not called, and the cached result is returned. If not, the function is called and the result is stored in the dictionary using the associated key.
The built-in functools.lru_cache
decorator uses a Python dict
just like this. The situation is slightly more complicated with Dash for two reasons:
- We might want the cache to persist across server restarts.
- When an app is served using multiple processes (e.g. multiple gunicorn workers on a single server, or multiple servers behind a load balancer), we might want to shared cached values across all of these processes.
For these reasons, a simple Python dict
is not a suitable storage container for caching Dash callbacks. Instead, long_callback
uses the current diskcache or Celery callback manager to store cached results.
To support caching in a variety of development and production use cases, long_callback
may be configured by one or more zero-argument functions, where the return values of these functions are combined with the function input arguments when generating the cache key. Several common use-cases will be described below.
Caching is enabled by providing one or more zero-argument functions to the cache_by
argument of long_callback
. These functions are called each time the status of a long_callback
function is checked, and their return values are hashed as part of the cache key.
Here is an example using the diskcache callback manager. The clear_cache
argument controls whether the cache is reset at startup. In this example, the cache_by
argument is set to a lambda
function that returns a fixed UUID that is randomly generated during app initialization. The implication of this cache_by
function is that the cache is shared across all invocations of the callback across all user sessions that are handled by a single server instance. Each time a server process is restarted, the cache is cleared an a new UUID is generated.
import time
from uuid import uuid4
import dash
import dash_html_components as html
import dash_labs as dl
## Diskcache
import diskcache
launch_uid = uuid4()
cache = diskcache.Cache("./cache")
long_callback_manager = dl.plugins.DiskcacheCachingCallbackManager(
cache, cache_by=[lambda: launch_uid], expire=60,
)
app = dash.Dash(
__name__,
plugins=[
dl.plugins.FlexibleCallbacks(),
dl.plugins.HiddenComponents(),
dl.plugins.LongCallback(long_callback_manager),
],
)
app.layout = html.Div(
[
html.Div([html.P(id="paragraph_id", children=["Button not clicked"])]),
html.Button(id="button_id", children="Run Job!"),
html.Button(id="cancel_button_id", children="Cancel Running Job!"),
]
)
@app.long_callback(
output=(dl.Output("paragraph_id", "children"), dl.Output("button_id", "n_clicks")),
args=dl.Input("button_id", "n_clicks"),
running=[
(dl.Output("button_id", "disabled"), True, False),
(dl.Output("cancel_button_id", "disabled"), False, True),
],
cancel=[dl.Input("cancel_button_id", "n_clicks")],
)
def callback(n_clicks):
time.sleep(2.0)
return [f"Clicked {n_clicks} times"], (n_clicks or 0) % 4
if __name__ == "__main__":
app.run_server(debug=True)
Here you can see that it takes a few seconds to run the callback function, but the cached results are used after n_clicks
cycles back around to 0. By interacting with the app in a separate tab, you can see that the cache results are shared across user sessions.
Various cache_by
functions can be used to accomplish a variety of caching policies. Here are a few examples:
- A
cache_by
function could return the file modification time of a dataset to automatically invalidate the cache when an input dataset changes. - In a Heroku or Dash Enterprise deployment setting, a
cache_by
function could return the git hash of the app, making it possible to persist the cache across redeploys, but invalidate it when the app's source changes. - In a Dash Enterprise setting, the
cache_by
function could return user meta-data to prevent cached values from being shared across users.
Here is an example of configuring the LongCallback
plugin to use Celery as the execution backend rather than a background process with diskcache.
import dash
import dash_labs as dl
from dash_labs.plugins import CeleryCallbackManager
## Celery on RabbitMQ
from celery import Celery
celery_app = Celery(__name__, backend='rpc://', broker='pyamqp://')
long_callback_manager = CeleryCallbackManager(celery_app)
app = dash.Dash(__name__, plugins=[
dl.plugins.FlexibleCallbacks(),
dl.plugins.HiddenComponents(),
dl.plugins.LongCallback(long_callback_manager)
])
See the Celery documentation for more information on configuring a Celery
app instance.