forked from graphdeco-inria/gaussian-splatting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convert.py
259 lines (215 loc) · 8.77 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import sys
import subprocess
import logging
from argparse import ArgumentParser
import shutil
from pathlib import Path
from tqdm import tqdm
from glob import glob
import shutil
from PIL import Image
import numpy as np
import multiprocessing as mp
# This Python script is based on the shell converter script provided in the MipNerF 360 repository.
parser = ArgumentParser("Colmap converter")
parser.add_argument("--no_gpu", action='store_true')
parser.add_argument("--source_path", "-s", required=True, type=str)
parser.add_argument("--camera", default="OPENCV", type=str)
parser.add_argument("--colmap_executable", default="", type=str)
parser.add_argument("--resize", action="store_true")
parser.add_argument("--magick_executable", default="", type=str)
parser.add_argument("--has_masks", action='store_true')
args = parser.parse_args()
colmap_command = '"{}"'.format(args.colmap_executable) if len(args.colmap_executable) > 0 else "colmap"
magick_command = '"{}"'.format(args.magick_executable) if len(args.magick_executable) > 0 else "magick"
use_gpu = 1 if not args.no_gpu else 0
# execute a command after logging it and propagate failure correctly
def exec(cmd):
logger.info(f"Executing: {cmd}")
try:
subprocess.check_call(cmd, stdout=subprocess.DEVNULL, shell=True)
except subprocess.CalledProcessError as e:
logger.error(f"Command failed with code {e.returncode}. Exiting.")
exit(e.returncode)
def replace_extension(filename, new_extension):
return os.path.splitext(filename)[0] + new_extension
# configure logging so info goes to stdout and warnings and errors go to stderr
# (how the heck is this not the default behavior?)
def init_logging():
logger = logging.getLogger('convert.py')
logger.setLevel(logging.INFO)
stdout_handler = logging.StreamHandler(sys.stdout)
stdout_handler.setLevel(logging.INFO)
stdout_handler.addFilter(lambda record: record.levelno <= logging.INFO)
stdout_formatter = logging.Formatter('%(name)s - %(levelname)s - %(message)s')
stdout_handler.setFormatter(stdout_formatter)
stderr_handler = logging.StreamHandler(sys.stderr)
stderr_handler.setLevel(logging.WARNING) # Set to WARNING to catch WARNING, ERROR, and CRITICAL
stderr_formatter = logging.Formatter('%(name)s - %(levelname)s - %(message)s')
stderr_handler.setFormatter(stderr_formatter)
# Add both handlers to the logger
logger.addHandler(stdout_handler)
logger.addHandler(stderr_handler)
return logger
logger = init_logging()
input_images_path = args.source_path + "/input/images"
distorted_path = args.source_path + "/distorted"
# create output directory
os.makedirs(distorted_path, exist_ok=True)
## Feature extraction
feat_extracton_cmd = colmap_command + " feature_extractor "\
"--image_path " + input_images_path + " \
--database_path " + distorted_path + "/database.db \
--ImageReader.single_camera 1 \
--ImageReader.camera_model " + args.camera + " \
--SiftExtraction.use_gpu " + str(use_gpu)
exec(feat_extracton_cmd)
## Feature matching
feat_matching_cmd = colmap_command + " exhaustive_matcher \
--database_path " + distorted_path + "/database.db \
--SiftMatching.use_gpu " + str(use_gpu)
exec(feat_matching_cmd)
os.makedirs(distorted_path + "/sparse", exist_ok=True)
### Bundle adjustment
# The default Mapper tolerance is unnecessarily large,
# decreasing it speeds up bundle adjustment steps.
mapper_cmd = (colmap_command + " mapper \
--database_path " + distorted_path + "/database.db \
--image_path " + input_images_path + " \
--output_path " + distorted_path + "/sparse \
--Mapper.ba_global_function_tolerance=0.000001")
exec(mapper_cmd)
# select the largest submodel from resulting sparse models
i = 0
largest_size = 0
index = 0
while True:
path = distorted_path + "/sparse/" + str(i)
if not os.path.exists(path):
break
# check the file size of images.bin
images_bin = path + "/images.bin"
size = os.path.getsize(images_bin)
if size > largest_size:
largest_size = size
index = i
i += 1
str_index = str(index)
sparse_path = distorted_path + "/sparse/" + str_index
oriented_path = distorted_path + "/oriented"
undistorted_path = args.source_path + "/undistorted"
os.makedirs(oriented_path, exist_ok=True)
# orientate the chosen model
aligner_cmd = (colmap_command + " model_orientation_aligner \
--image_path " + input_images_path + " \
--input_path " + sparse_path + " \
--output_path " + oriented_path)
exec(aligner_cmd)
### Image undistortion
## We need to undistort our images into ideal pinhole intrinsics.
img_undist_cmd = (colmap_command + " image_undistorter \
--image_path " + input_images_path + " \
--input_path " + oriented_path + " \
--output_path " + undistorted_path + "\
--output_type COLMAP")
exec(img_undist_cmd)
### Handle mask images
if args.has_masks:
masks_path = args.source_path + "/masks"
os.makedirs(masks_path, exist_ok=True)
# convert database to TXT format so we can make images .png
model_converter_cmd = (colmap_command + " model_converter \
--input_path " + oriented_path + " \
--output_path " + masks_path + " \
--output_type TXT")
exec(model_converter_cmd)
# read lines
with open(masks_path + "/images.txt", 'r') as file:
lines = file.readlines()
# replace extensions
l = 0
for i in range(len(lines)):
if lines[i].startswith("#"):
# skip comments
continue
if l % 2 == 0:
# handle every second line
words = lines[i].rstrip().split(" ")
words[-1] = replace_extension(words[-1], ".png")
lines[i] = " ".join(words) + "\n"
l += 1
# write modified images.txt
with open(masks_path + "/images.txt", 'w') as file:
file.writelines(lines)
os.makedirs(masks_path + "/undistorted", exist_ok=True)
# undistort masks
mask_undist_cmd = (colmap_command + " image_undistorter \
--image_path " + args.source_path + "/input/masks \
--input_path " + masks_path + " \
--output_path " + masks_path + "/undistorted \
--output_type COLMAP")
exec(mask_undist_cmd)
def combine(color_path, alpha_path, output_path):
alpha = Image.open(alpha_path).convert('L')
clr = Image.open(color_path)
clr.putalpha(alpha)
clr.save(output_path)
files = os.listdir(undistorted_path + "/images")
for file in files:
mask_file = replace_extension(file, ".png")
color_image = undistorted_path + "/images/" + file
mask_image = masks_path + "/undistorted/images/" + mask_file
output_image = undistorted_path + "/images/" + mask_file
combine(color_image, mask_image, output_image)
if mask_file != file:
os.remove(color_image)
model_src_path = masks_path + "/undistorted/sparse"
else:
model_src_path = undistorted_path + "/sparse"
# move all files from sparse into sparse/0, as train.py expects it
files = os.listdir(model_src_path)
os.makedirs(undistorted_path + "/sparse/0", exist_ok=True)
# Copy each file from the source directory to the destination directory
for file in files:
if file == "0":
continue
source_file = os.path.join(model_src_path, file)
destination_file = os.path.join(undistorted_path, "sparse", "0", file)
shutil.copy(source_file, destination_file)
# Generate 1/2, 1/4 and 1/8th resized images
if (args.resize):
print("Copying and resizing...")
images_path = undistorted_path + "/images"
images_2_path = images_path + "_2"
images_4_path = images_path + "_4"
images_8_path = images_path + "_8"
os.makedirs(images_2_path, exist_ok=True)
os.makedirs(images_4_path, exist_ok=True)
os.makedirs(images_8_path, exist_ok=True)
# Get the list of files in the source directory
files = os.listdir(images_path)
for file in files:
source_file = os.path.join(images_path, file)
output_file2 = os.path.join(images_2_path, file)
output_file4 = os.path.join(images_4_path, file)
output_file8 = os.path.join(images_8_path, file)
# generate the resized images in a single call
generate_thumbnails_cmd = ("convert "
# resize input file, uses less memory
f"{source_file}[50%]"
f" -write mpr:thumb -write {output_file2} +delete"
f" mpr:thumb -resize 50% -write mpr:thumb -write {output_file4} +delete"
f" mpr:thumb -resize 50% {output_file8}")
exec(generate_thumbnails_cmd)
print("Done.")