forked from cvlab-kaist/RAIN-GS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·272 lines (231 loc) · 13.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import torch
from random import randint
from utils.loss_utils import l1_loss, ssim
from gaussian_renderer import render, network_gui
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
import numpy as np
# import wandb
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from lpipsPyTorch import lpips
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def training(dataset, opt, pipe, testing_iterations ,saving_iterations, checkpoint_iterations ,checkpoint, debug_from, args_dict):
first_iter = 0
tb_writer = prepare_output_and_logger(dataset, args_dict['output_path'], args_dict['exp_name'], args_dict['project_name'])
if args_dict['ours']:
divide_ratio = 0.7
else:
divide_ratio = 0.8
print(f"Set divide_ratio to {divide_ratio}")
gaussians = GaussianModel(dataset.sh_degree, divide_ratio)
scene = Scene(dataset, gaussians, args_dict=args_dict)
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress", dynamic_ncols=True)
first_iter += 1
for iteration in range(first_iter, opt.iterations + 1):
# if network_gui.conn == None:
# network_gui.try_connect()
# while network_gui.conn != None:
# try:
# net_image_bytes = None
# custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
# if custom_cam != None:
# net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer)["render"]
# net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
# network_gui.send(net_image_bytes, dataset.source_path)
# if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
# break
# except Exception as e:
# network_gui.conn = None
iter_start.record()
gaussians.update_learning_rate(iteration)
if args_dict['DSV']:
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
elif args_dict['ours']:
if iteration >= 5000:
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
if (iteration - 1) == debug_from:
pipe.debug = True
bg = torch.rand((3), device="cuda") if opt.random_background else background
c2f = args_dict['c2f']
if c2f == True:
if iteration == 1 or (iteration % args_dict['c2f_every_step'] == 0 and iteration < opt.densify_until_iter) :
H = viewpoint_cam.image_height
W = viewpoint_cam.image_width
N = gaussians.get_xyz.shape[0]
low_pass = max (H * W / N / (9 * np.pi), 0.3)
if args_dict['c2f_max_lowpass'] > 0:
low_pass = min(low_pass, args_dict['c2f_max_lowpass'])
print(f"[ITER {iteration}] Low pass filter : {low_pass}")
else:
low_pass = 0.3
render_pkg = render(viewpoint_cam, gaussians, pipe, bg, low_pass = low_pass)
image, viewspace_point_tensor, visibility_filter, radii, depth = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"], render_pkg["depth"]
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
loss.backward()
iter_end.record()
with torch.no_grad():
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}", "num_gaussians" : f"{gaussians.get_xyz.shape[0]}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background))
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
if iteration < opt.densify_until_iter:
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
def prepare_output_and_logger(args, output_path, exp_name, project_name):
if (not args.model_path) and (not exp_name):
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
elif (not args.model_path) and exp_name:
args.model_path = os.path.join("./output", exp_name)
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
with open(os.path.join(args.model_path, 'command_line.txt'), 'w') as file:
file.write(' '.join(sys.argv))
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
print("Logging progress to Tensorboard at {}".format(args.model_path))
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
lpips_test = 0.0
ssim_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
if tb_writer and (idx < 5):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
lpips_test += lpips(image, gt_image, net_type='vgg').mean().double()
ssim_test += ssim(image, gt_image)
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
lpips_test /= len(config['cameras'])
ssim_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {} LPIPS(vgg) {} SSIM {}".format(iteration, config['name'], l1_test, psnr_test, lpips_test, ssim_test))
with open(os.path.join(args.output_path, args.exp_name, 'log_file.txt'), 'a') as file:
file.write("\n[ITER {}] Evaluating {}: L1 {} PSNR {} LPIPS(vgg) {} SSIM {}\n".format(iteration, config['name'], l1_test, psnr_test, lpips_test, ssim_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - lpips', lpips_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - ssim', ssim_test, iteration)
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
torch.cuda.empty_cache()
if __name__ == "__main__":
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[7000, 30000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[7000, 30000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--output_path", type=str,default='./output/')
parser.add_argument("--white_bg", action="store_true")
parser.add_argument("--exp_name", type=str, default=None)
parser.add_argument("--project_name", type=str, default="gaussian-splatting")
parser.add_argument("--c2f", action="store_true", default=False)
parser.add_argument("--c2f_every_step", type=float, default=1000, help="Recompute low pass filter size for every c2f_every_step iterations")
parser.add_argument("--c2f_max_lowpass", type=float, default= 300, help="Maximum low pass filter size")
parser.add_argument("--num_gaussians", type=int, default=1000000, help="Number of random initial gaussians to start with (default=1M for DSV)")
parser.add_argument('--DSV', action='store_true', help="Use the initialisation from the paper")
parser.add_argument("--ours", action="store_true", help="Use our initialisation")
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
args.white_background = args.white_bg
print("Optimizing " + args.model_path)
safe_state(args.quiet)
if args.ours:
print("========= USING OUR INITIALISATION =========")
args.c2f = True
args.c2f_every_step = 1000
args.c2f_max_lowpass = 300
args.eval = True
args.num_gaussians = 10
if not args.DSV and not args.ours:
parser.error("Please specify either --DSV or --ours")
print(f"args: {args}")
while True :
try:
network_gui.init(args.ip, args.port)
print(f"GUI server started at {args.ip}:{args.port}")
break
except Exception as e:
args.port = args.port + 1
print(f"Failed to start GUI server, retrying with port {args.port}...")
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations ,args.save_iterations, args.checkpoint_iterations ,args.start_checkpoint, args.debug_from, args.__dict__)
print("\nTraining complete.")