-
Notifications
You must be signed in to change notification settings - Fork 2
/
44A10-RectificationOfAntiperiodicFunction.tex
73 lines (61 loc) · 2.17 KB
/
44A10-RectificationOfAntiperiodicFunction.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{RectificationOfAntiperiodicFunction}
\pmcreated{2013-03-22 18:58:19}
\pmmodified{2013-03-22 18:58:19}
\pmowner{pahio}{2872}
\pmmodifier{pahio}{2872}
\pmtitle{rectification of antiperiodic function}
\pmrecord{6}{41832}
\pmprivacy{1}
\pmauthor{pahio}{2872}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{44A10}
\pmclassification{msc}{26A99}
\pmsynonym{rectification}{RectificationOfAntiperiodicFunction}
\pmrelated{MaximalNumber}
\pmrelated{LaplaceTransformOfPeriodicFunctions}
\pmrelated{MinimalAndMaximalNumber}
\pmdefines{half-wave rectification}
\pmdefines{full-wave rectification}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\theoremstyle{definition}
\newtheorem*{thmplain}{Theorem}
\begin{document}
Let the positive number $p$ be the antiperiod of the real function $f$ and
$$f(t) \geqq 0 \quad \mbox{for} \;\; 0 < t < p.$$
Then the function $f_1$ defined by
\begin{align*}
f_1(t) \;:=\; \max\{f(t),\,0\} \;=\;
\begin{cases}
f(t) \quad \mbox{for} \;\; f(t) > 0,\\
0 \qquad\, \mbox{for} \;\; f(t) \leqq 0
\end{cases}
\end{align*}
is the \emph{half-wave rectification} of $f$ and the function $f_2$ defined by
$$f_2(t) \;:=\; |f(t)|$$
is the \emph{full-wave rectification} of $f$.\, They are \PMlinkname{periodic}{PeriodicFunctions}, the former with \PMlinkname{period}{PeriodicFunctions} $2p$ and the latter with \PMlinkescapetext{period} $p$.\\
The Laplace transforms are
$$\mathcal{L}\{f_1(t)\} \;=\; \frac{1}{1\!-\!e^{-ps}}F(s),$$
$$\mathcal{L}\{f_2(t)\} \;=\; \frac{1\!+\!e^{-ps}}{1\!-\!e^{-ps}}F(s).$$
%%%%%
%%%%%
\end{document}