-
Notifications
You must be signed in to change notification settings - Fork 2
/
44A10-LaplaceTransformOfPeriodicFunctions.tex
80 lines (65 loc) · 2.32 KB
/
44A10-LaplaceTransformOfPeriodicFunctions.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{LaplaceTransformOfPeriodicFunctions}
\pmcreated{2013-03-22 18:58:24}
\pmmodified{2013-03-22 18:58:24}
\pmowner{pahio}{2872}
\pmmodifier{pahio}{2872}
\pmtitle{Laplace transform of periodic functions}
\pmrecord{5}{41835}
\pmprivacy{1}
\pmauthor{pahio}{2872}
\pmtype{Derivation}
\pmcomment{trigger rebuild}
\pmclassification{msc}{44A10}
\pmrelated{RectificationOfAntiperiodicFunction}
\pmrelated{TableOfLaplaceTransforms}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\theoremstyle{definition}
\newtheorem*{thmplain}{Theorem}
\begin{document}
Let $f(t)$ be periodic with the positive \PMlinkname{period}{PeriodicFunctions} $p$.\, Denote by $H(t)$ the Heaviside step function.\, If now
$$g(t) \;:=\; f(t)H(t)\!-\!f(t\!-\!p)H(t\!-\!p),$$
then it follows
\begin{align}
g(t) \;=\;
\begin{cases}
f(t) \quad \mbox{for}\;\;0 < t < p,\\
0 \qquad\, \mbox{otherwise.}
\end{cases}
\end{align}
By the \PMlinkname{parent entry}{DelayTheorem}, the Laplace transform of $g$ is
$$G(s) \;=\; F(s)\!-\!e^{-ps}F(s),$$
whence
$$F(s) \;=\; \frac{G(s)}{1\!-\!e^{-ps}} \;=\; \frac{1}{1\!-\!e^{-ps}}\int_0^\infty\!e^{-st}g(t)\,dt
\;=\; \frac{1}{1\!-\!e^{-ps}}\int_0^p\!e^{-st}f(t)\,dt.$$\\
Thus we have the rule
\begin{align}
\mathcal{L}\{f(t)\} \;=\; \frac{1}{1\!-\!e^{-ps}}\int_0^p\!e^{-st}f(t)\,dt \qquad (\mbox{period } p).
\end{align}
On the contrary, if $f(t)$ is antiperiodic with positive antiperiod $p$, then the function
$$g(t) \;:=\; f(t)H(t)\!+\!f(t\!-\!p)H(t\!-\!p)$$
also has the property (1).\, Analogically with the preceding procedure, one may derive the rule
\begin{align}
\mathcal{L}\{f(t)\} \;=\; \frac{1}{1\!+\!e^{-ps}}\int_0^p\!e^{-st}f(t)\,dt \qquad (\mbox{antiperiod } p).
\end{align}
%%%%%
%%%%%
\end{document}