-
Notifications
You must be signed in to change notification settings - Fork 2
/
44A10-LaplaceTransformOfLogarithm.tex
65 lines (52 loc) · 2.14 KB
/
44A10-LaplaceTransformOfLogarithm.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{LaplaceTransformOfLogarithm}
\pmcreated{2013-03-22 18:26:01}
\pmmodified{2013-03-22 18:26:01}
\pmowner{pahio}{2872}
\pmmodifier{pahio}{2872}
\pmtitle{Laplace transform of logarithm}
\pmrecord{7}{41091}
\pmprivacy{1}
\pmauthor{pahio}{2872}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{44A10}
\pmsynonym{Laplace transform of logarithm function}{LaplaceTransformOfLogarithm}
\pmrelated{PowerFunction}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\theoremstyle{definition}
\newtheorem*{thmplain}{Theorem}
\begin{document}
\textbf{Theorem.}\; The Laplace transform of the natural logarithm function is
$$\mathcal{L}\{\ln{t}\} \;=\; \frac{\Gamma\,'(1)-\ln{s}}{s}$$
where $\Gamma$ is Euler's gamma function.\\
{\em Proof.}\; We use the \PMlinkname{Laplace transform of the power function}{LaplaceTransformOfPowerFunction}
$$\int_0^\infty e^{-st}t^a\,dt \;=\; \frac{\Gamma(a\!+\!1)}{s^{a+1}}$$
by differentiating it with respect to the parametre $a$:
$$\int_0^\infty e^{-st}t^a\ln{t}\;dt \;=\; \frac{\Gamma'(a\!+\!1)s^{a+1}-\Gamma(a\!+\!1)s^{a+1}\ln{s}}{(s^{a+1})^2}
\;=\; \frac{\Gamma'(a\!+\!1)-\Gamma(a\!+\!1)\ln{s}}{s^{a+1}}$$
Setting here\, $a = 0$,\, we obtain
$$\mathcal{L}\{\ln{t}\} \;=\; \int_0^\infty e^{-st}\ln{t}\;dt \;=\; \frac{\Gamma\,'(1)-1\cdot\ln{s}}{s},$$
Q.E.D.\\
\textbf{Note.}\; The number $\Gamma'(1)$ is equal the \PMlinkescapetext{negative} of the \PMlinkname{Euler--Mascheroni constant}{EulersConstant}, as is seen in the entry digamma and polygamma functions.
%%%%%
%%%%%
\end{document}