-
Notifications
You must be signed in to change notification settings - Fork 2
/
44A10-DifferentiationOfLaplaceTransformWithRespectToParameter.tex
76 lines (62 loc) · 2.34 KB
/
44A10-DifferentiationOfLaplaceTransformWithRespectToParameter.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{DifferentiationOfLaplaceTransformWithRespectToParameter}
\pmcreated{2014-03-09 12:52:11}
\pmmodified{2014-03-09 12:52:11}
\pmowner{pahio}{2872}
\pmmodifier{pahio}{2872}
\pmtitle{differentiation of Laplace transform with respect to parameter}
\pmrecord{2}{88064}
\pmprivacy{1}
\pmauthor{pahio}{2872}
\pmtype{Theorem}
\pmclassification{msc}{44A10}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% need this for including graphics (\includegraphics)
\usepackage{graphicx}
% for neatly defining theorems and propositions
\usepackage{amsthm}
% making logically defined graphics
%\usepackage{xypic}
% used for TeXing text within eps files
%\usepackage{psfrag}
% there are many more packages, add them here as you need them
% define commands here
\begin{document}
We use the curved \PMlinkescapetext{arrows to point} from the Laplace-transformed functions to the corresponding initial functions.\\
If\,
$$f(t,x) \;\,\curvearrowleft\;\, F(s,x),$$
then one can differentiate both functions with respect to the parametre $x$:
\begin{align}
f'_x(t,x) \;\,\curvearrowleft\;\, F'_x(s,x)
\end{align}
(1) may be written also as
\begin{align}
\mathcal{L}\{\frac{\partial}{\partial x}f(t,x)}\}
\;=\; \frac{\partial}{\partial x}\mathcal{L}\{f(t,x)\}.
\end{align}
{\em Proof.}\, We differentiate partially both sides of the defining
equation
$$F(s,x) \;:= \int_0^\infty e^{-st}f(t,x)\,dt,$$
on the right hand side
\PMlinkname{under the integration sign}{differentiationundertheintegralsign}, getting
\begin{align}
F'_x(s,x) \;=\; \int_0^\infty e^{-st}f'_x(t,x)\,dx,
\end{align}
which means same as (1).\, Q.E.D.\\
\textbf{Example.}\, If the rule
$$\frac{s}{s^2\!-\!a^2} \;\,\curvearrowright\;\, \cosh{at}$$
is differentiated with respect to $a$, the result is
$$\frac{2as}{(s^2\!-\!a^2)^2}\;\,\curvearrowright
\;\, t\,\sinh{at}.$$\\
\begin{thebibliography}{9}
\bibitem{K.V.}{\sc K. V\"ais\"al\"a:} {\em Laplace-muunnos}.\, Handout Nr. 163.\quad Teknillisen korkeakoulun ylioppilaskunta, Otaniemi, Finland (1968).
\end{thebibliography}
\end{document}