-
Notifications
You must be signed in to change notification settings - Fork 2
/
40A05-DeterminingSeriesConvergence.tex
70 lines (61 loc) · 2.52 KB
/
40A05-DeterminingSeriesConvergence.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{DeterminingSeriesConvergence}
\pmcreated{2013-03-22 13:24:45}
\pmmodified{2013-03-22 13:24:45}
\pmowner{CWoo}{3771}
\pmmodifier{CWoo}{3771}
\pmtitle{determining series convergence}
\pmrecord{16}{33958}
\pmprivacy{1}
\pmauthor{CWoo}{3771}
\pmtype{Topic}
\pmcomment{trigger rebuild}
\pmclassification{msc}{40A05}
\pmrelated{ThenA_kto0IfSum_k1inftyA_kConverges}
\pmrelated{LimitComparisonTest}
\pmrelated{AbsoluteConvergence}
\pmrelated{InfiniteProductOfSums1a_i}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{url}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\def\ser{\Sigma a_n}
\begin{document}
Consider a series $\ser$. To determine whether $\ser$ converges or diverges, several tests are available. There is no precise rule indicating which \PMlinkescapetext{type} of test to use with a given series. The more obvious approaches are collected below.
\begin{itemize}
\item When the terms in $\ser$ are positive, there are several possibilities:
\begin{itemize}
\item comparison test,
\item root test (Cauchy's root test),
\item \PMlinkname{ratio test of d'Alembert}{RatioTestOfDAlembert},
\item ratio test,
\item \PMlinkname{$p$-test}{PTest},
\item integral test,
\item Raabe's criteria.
\end{itemize}
\item limit comparison test.
\item \PMlinkname{the divergence test}{ThenA_kto0IfSum_k1inftyA_kConverges}.
\item If the series is an alternating series, then the \PMlinkname{alternating series test}{AlternatingSeriesTest} may be used.
\item Abel's test for convergence can be used when terms in $\ser$ can be obained as the product of terms of a convergent series with terms of a monotonic convergent sequence.
\end{itemize}
The root test and the ratio test are direct applications of the comparison test to the geometric series with terms $(|a_n|)^{1/n}$ and $\frac{a_{n+1}}{a_n}$, respectively.
For a paper about tests for convergence, please see \PMlinkexternal{this article.}{http://planetmath.org/?op=getobj&from=lec&id=37}
%%%%%
%%%%%
\end{document}